首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1012篇
  免费   193篇
  国内免费   614篇
测绘学   1篇
地球物理   180篇
地质学   1527篇
海洋学   23篇
综合类   47篇
自然地理   41篇
  2024年   18篇
  2023年   27篇
  2022年   48篇
  2021年   40篇
  2020年   55篇
  2019年   60篇
  2018年   58篇
  2017年   62篇
  2016年   59篇
  2015年   55篇
  2014年   95篇
  2013年   80篇
  2012年   89篇
  2011年   77篇
  2010年   50篇
  2009年   69篇
  2008年   93篇
  2007年   87篇
  2006年   64篇
  2005年   80篇
  2004年   73篇
  2003年   52篇
  2002年   39篇
  2001年   36篇
  2000年   36篇
  1999年   45篇
  1998年   38篇
  1997年   35篇
  1996年   37篇
  1995年   17篇
  1994年   37篇
  1993年   17篇
  1992年   15篇
  1991年   14篇
  1990年   17篇
  1989年   13篇
  1988年   11篇
  1987年   17篇
  1986年   2篇
  1985年   1篇
  1978年   1篇
排序方式: 共有1819条查询结果,搜索用时 62 毫秒
81.
新疆尼勒克县哈勒尕提铜铁矿地质特征及找矿前景   总被引:1,自引:0,他引:1  
曹景良 《地质找矿论丛》2005,20(Z1):120-124
文章介绍了新疆尼勒克县哈勒尕提铜铁矿成矿地质背景和矿区地质特征、矿体特征、矿物成分、微量元素分布特征等,指出该矿具备大型矿床的成矿条件,有较大的找矿前景.  相似文献   
82.
新疆哈密维权银(铜)矿床地质特征和成矿时代   总被引:18,自引:2,他引:18  
维权银(铜)矿床是2000年发现的一个独立中型银矿。经过野外及室内研究,发现矿床产于塔里木板块北缘活动带觉罗塔格晚古生代岛弧带的南侧,赋矿地层为中石炭统土古土布拉克组浅海相中酸性、基性火山岩、碎屑岩和碳酸盐岩,受区域早期热蚀变作用而发生不含矿的角岩化;受晚期岩体侵入活动作用形成Ag、Cu等矽卡岩矿化;容矿岩石为钙铁榴石矽卡岩,是一个远离侵入体的以银为主的多金属矽卡岩型矿床。采集维权银(铜)矿东南部花岗岩进行单颗粒锆石的SHRIMPU_Pb年龄测定,结果为(297±3)Ma,是矿床成矿年龄的上限。  相似文献   
83.
84.
A series of experiments and petrographic analyses have been run to determine the pre-eruption phase equilibria and ascent dynamics of dacitic lavas composing Black Butte, a dome complex on the flank of Mount Shasta, California. Major and trace element analyses indicate that the Black Butte magma shared a common parent with contemporaneously erupted magmas at the Shasta summit. The Black Butte lava phenocryst phase assemblage (20 v.%) consists of amphibole, plagioclase (core An77.5), and Fe–Ti oxides in a fine-grained (< 0.5 mm) groundmass of plagioclase, pyroxene, Fe–Ti oxides, amphibole, and cristobalite. The phenocryst assemblage and crystal compositions are reproduced experimentally between 890 °C and 910 °C, ≥ 300 MPa, XH2O = 1, and oxygen fugacity = NNO + 1. This study has quantified the extent of three crystallization processes occurring in the Black Butte dacite that can be used to discern ascent processes. Magma ascent rate was quantified using the widths of amphibole breakdown rims in natural samples, using an experimental calibration of rim development in a similar magma at relevant conditions. The majority of rims are 34 ± 10 μm thick, suggesting a time-integrated magma ascent rate of 0.004–0.006 m/s among all four dome lobes. This is comparable to values for effusive samples from the 1980 Mount St. Helens eruption and slightly faster than those estimated at Montserrat. A gap between the compositions of plagioclase phenocryst cores and microlites suggests that while phenocryst growth was continuous throughout ascent, microlite formation did not occur until significantly into ascent. The duration of crystallization is estimated using the magma reservoir depth and ascent rate, as determined from phase equilibria and amphibole rim widths, respectively. Textural analysis of the natural plagioclase crystals yields maximum growth rates of plagioclase phenocryst rims and groundmass microlites of 8.7 × 10− 8 and 2.5 × 10− 8 mm/s, respectively. These rates are comparable to values determined from time-sequenced samples of dacite erupted effusively from Mount St. Helens during 1980 and indicate that syneruptive crystallization processes were important during the Black Butte eruptive cycle.  相似文献   
85.
Equilibrium and disequilibrium degassing of a volatile phase from a magma of K-phonolitic composition was investigated to assess its behavior upon ascent. Decompression experiments were conducted in Ar-pressurized externally heated pressure vessels at superliquidus temperature (1050 °C), in the pressure range 10–200 MPa using pure water as fluid phase. All experiments were equilibrated at 200 MPa and then decompressed to lower pressures with rates varying from 0.0028 to 4.8 MPa/s. Isobaric saturation experiments were performed at the same temperature and at 900–950 °C to determine the equilibrium water solubility in the pressure range 30–250 MPa. The glasses obtained from decompression experiments were analyzed for their dissolved water content, vesicularity and bubble size distribution. All decompressed samples presented a first event of bubble nucleation at the capsule–melt interface. Homogeneous bubble nucleation in the melt only occurred in fast-decompressed experiments (4.8 and 1.7 MPa/s), for ΔP ≅ 100 MPa. For these decompression rates high water over-saturations were maintained until a rapid exsolution was triggered at ΔP > 150 MPa. For slower rates (0.0028, 0.024, 0.17 MPa/s) the degassing of the melt took place by diffusive growth of the bubbles nucleating at the capsule–melt interface. This process sensibly reduced water over-saturation in the melt, preventing homogeneous nucleation to occur. For decompression rates of 0.024 and 0.17 MPa/s low water over-saturations were attained in the melt, gradually declining toward equilibrium concentrations at low pressures. A near-equilibrium degassing path was observed for a decompression rate of 0.0028 MPa/s. Experimental data combined with natural pumice textures suggest that both homogeneous and heterogeneous bubble nucleations occurred in the phonolitic magma during the AD 79 Vesuvius plinian event. Homogeneous bubble nucleation probably occurred at a depth of ∼ 3 km, in response to a fast decompression of the magma during the ascent.  相似文献   
86.
The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše–Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a “mush model” of magmatic systems.  相似文献   
87.
Stepwise accumulation and ascent of magmas   总被引:1,自引:0,他引:1  
One of the currently popular theories on magma ascent is that it mainly occurs by propagating hydrofractures (dykes) and that magma viscosity is the primary rate‐controlling factor. This theory is based on mathematical models for single hydrofractures under idealised conditions. We simulated magma ascent with air ascending through gelatine and observed that the air ascended in batches, following paths made by their predecessors. Multiple batches accumulate at obstacles along the path. Although magma viscosity may control ascent rate during movement, obstacles ultimately control the size and average ascent velocity of ascending batches. We propose that step‐wise movement of magma batches is the mechanism of primary accumulation and ascent from the partially molten source rock of a magma to its first emplacement site and therefore the main ascent mechanism for granitic magmas. ‘Classical’ dyking is the mechanism for secondary ascent from a magma chamber.  相似文献   
88.
Skarns and Genesis of the Huanggang Fe-Sn Deposit, Inner Mongolia, China   总被引:2,自引:0,他引:2  
Abstract: The skarns and genesis were studied of the Huanggang Fe‐Sn deposit and the nearby Sumugou Zn‐Pb deposit in Inner Mongolia, China. In the Huanggang mine, Nos. 1 to 4 Fe ore bodies are arranged along a calcareous horizon from proximal to distal in this order to a granite intrusion named Luotuochangliang, while Sn ore body is situated near another granite intrusion named 204. According to the distance from the granitic intrusions, mineral assemblages in skarns are systematically changed. Garnet is the most predominant skarn mineral throughout the deposit. Hastingsitic amphiboles, however, predominate in the proximal skarns. Fluorite is common in the proximal skarns, while instead calcite is common in the distal skarns. Chlorite is characteristically present only in No. 3 ore body, and chlorite geothermometry gives near 300C for the mineralization of later stage. When garnet crystal shows zonal structure, isotropic andraditic garnet occupies the core, and is surrounded with anisotropic less‐andraditic garnet. The presence of white skarn along the boundary between main skarns and host sedimentary rocks confirms relatively reducing environment prevailing as a whole in the studied area. However, the compositional relation between coexisting garnet and clinopyroxene demonstrates that relatively oxidizing condition was achieved for garnet skarn and magnetite ore in the distal, Nos. 2 to 4 Fe ore bodies and Sumugou deposit, compared to that for garnet skarn in the proximal, No. 1 and Sn ore bodies. Preliminary study on the tin content of garnets in the studied area revealed a certain degree of contribution brought from granitic intrusives since the early stage of skarn formation, irrespective of proximal or distal. Oxygen isotope study on garnet, magnetite, quartz and skarn calcite, as well as hydrogen isotope study on hastingsitic amphibole, demonstrates mainly meteoric water origin for the skarn– and ore‐forming solutions. The occurrence of Sn, W, Mo and F minerals indicates that those elements were mainly supplied to the deposit later than the formation of skarns and iron ores, overlapping to them. These constraints allow to delineate the formation model of the deposit as follows (Fig. 10): At the time of late Jurassic to early Cretaceous, felsic activity occurred in this region as a part of Yanshanian magmatism, and formed granitic intrusions as well as thick volcanic piles on the surface. The circulation of meteoric water was provoked by the heat brought by the intrusions. By this circulation, much amount of iron was extracted from andesites of the Dashizhai Formation, and precipitated as skarns and magnetite ores along calcareous horizons near the bottom of the Huanggangliang Formation. Subsequently, volatile‐rich fluids with Sn, W and Mo were expelled from the solidifying granitic magmas, and precipitated these metals in the pre‐existing skarns and ores.  相似文献   
89.
Abstract: The Dajing Cu–Sn–Ag–Pb–Zn ore deposit, Inner Mongolia of China, is a fissure‐filling hydrothermal ore deposit that occurs within the Upper Permian Linxi group. No magmatic pluton and volcanic rocks outcrop on the surface of the deposit. Most of ore veins show clear‐cut boundary with country rocks. Wallrock alterations that include silicification, carbonation, chlori–tization, and sericitization are generally weak and occur in the close vicinity of ore veins. Mineralization is divided into three stages: (1) cassiterite–arsenopyrite–quartz stage, (2) sulfide stage, and (3) Pb–Zn–Ag–carbonate stage. These mineralization stages have distinct ranges of homogenization temperatures, 290–350C for Stage 1, 260–320C for Stage 2, and 150–250C for Stage 3. However, salinities for Stages 1, 2, and 3 overlap and range between 2.2 and 10.4 wt % NaCl equivalent. The dD values relative to V‐SMOW of inclusion water from quartz are lower than –88% and centered at –100 to –130%. The δ34S values relative to CDT of sulfide ore minerals and δ13C values relative to PDB of carbonate gangue minerals, vary from –0.3 to +2.6%, and from –7.0 to –2.9%, respectively. Integrated isotopic data point to two major contributions to the mineralizing fluid that include a dominant meteoric‐derived water and the other from hypogene magma for sulfur and carbon species. Analyses of inclusion gas and liquid compositions are performed. The H2O and CO2 are the two most abundant gaseous components, whereas SO42‐ and Cl, and Na+, Ca2+, and K+ are the major anions and cations, respectively. A linear trend is shown on the gaseous H2O versus CO2 plot. Phase separation is excluded as cause for the trend on the basis of isotope data and fluid inclusion microthermometry. In addition, a weak wallrock alteration does not support fluid‐rock interaction as an efficient mechanism. Hence, the linear H2O–CO2 trend is interpreted in terms of absorption or dilution of CO2–dominant magmatic vapor by meteoric‐derived water. Cooling effects resulting from dilution may have caused precipitation of ore minerals. Major and trace element compositions of regional granites show a high‐K calc–alkaline characteristics and an arc–affinity. Lead isotopic compositions of galena samples from the Dajing deposit exhibit elevated U/Pb and Th/Pb ratios. These characteristics indicate a common source of supra subduction zone mantle wedge for regional granites and metals from the Dajing deposit.  相似文献   
90.
Generation of Deccan Trap magmas   总被引:1,自引:0,他引:1  
Deccan Trap magmas may have erupted through multiple centers, the most prominent of which may have been a shield volcano-like structure in the Western Ghats area. The lavas are predominantly tholeiitic; alkalic mafic lavas and carbonatites are rare. Radioisotope dating, magnetic chronology, and age constraints from paleontology indicate that although the eruption started some 68 Ma, the bulk of lavas erupted at around 65–66 Ma. Paleomagnetic constraints indicate an uncertainty of ± 500,000 years for peak volcanic activity at 65 m.y. in the type section of the Western Ghats. Maximum magma residence times were calculated in this study based on growth rates of “giant plagioclase” crystals in lavas that marked the end phase of volcanic activity of different magma chambers. These calculations suggest that the > 1.7 km thick Western Ghats section might have erupted within a much shorter time interval of ∼ 55,000 years, implying phenomenal eruption rates that are orders of magnitude larger than any present-day eruption rate from any tectonic environment. Other significant observations/conclusions are as follows: (1) Deccan lavas can be grouped into stratigraphic subdivisions based on their geochemistry; (2) While some formations are relatively uncontaminated others are strongly contaminated by the continental crust; (3) Deccan magmas were produced by 15–30% melting of a Fe-rich lherzolitic source at ∼ 3–2 GPa; (4) Parent magmas of the relatively uncontaminated Ambenali formation had a primitive composition with 16%MgO, 47%SiO2; (5) Deccan magmas were generated much deeper and by significantly more melting than other continental flood basalt provinces; (6) The erupted Deccan tholeiitic lavas underwent fractionation and magma mixing at ∼ 0.2 GPa. The composition and origin of the crust and crust/mantle boundary beneath the Deccan are discussed with respect to the influence of Deccan magmatic episode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号