首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5067篇
  免费   1208篇
  国内免费   4225篇
测绘学   275篇
大气科学   144篇
地球物理   635篇
地质学   8577篇
海洋学   369篇
天文学   31篇
综合类   274篇
自然地理   195篇
  2024年   57篇
  2023年   152篇
  2022年   273篇
  2021年   362篇
  2020年   387篇
  2019年   503篇
  2018年   486篇
  2017年   486篇
  2016年   531篇
  2015年   531篇
  2014年   594篇
  2013年   606篇
  2012年   692篇
  2011年   465篇
  2010年   455篇
  2009年   376篇
  2008年   364篇
  2007年   413篇
  2006年   400篇
  2005年   329篇
  2004年   299篇
  2003年   247篇
  2002年   178篇
  2001年   159篇
  2000年   156篇
  1999年   154篇
  1998年   113篇
  1997年   134篇
  1996年   101篇
  1995年   101篇
  1994年   92篇
  1993年   56篇
  1992年   64篇
  1991年   40篇
  1990年   31篇
  1989年   36篇
  1988年   21篇
  1987年   31篇
  1986年   9篇
  1985年   10篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The Scandinavian Caledonides have been viewed as resulting from either a single Silurian (i.e. Scandian) event or from polycyclic orogenies involving several collisions on the margin of Baltica. Early studies of the Kalak Nappe Complex (KNC) in Finnmark, Arctic Norway, led to the hypothesis of an Early Cambrian-Early Ordovician (520-480 Ma) Finnmarkian Orogeny, though the nature of this tectonic event remains enigmatic. In this contribution we have employed in situ UV laser ablation Ar-Ar dating of fine-grained phyllite and schist from the eastern Caledonides of Arctic Norway to investigate the presence of pre-Scandian tectonometamorphic events. U-Th-Pb detrital zircon and whole rock Sm-Nd analyses have been used to test the regional stratigraphic correlations of these metasedimentary rocks. These results indicate that the Berlevåg Formation within the Tanafjord Nappe, previously assumed to be part of the KNC, was deposited after 1872 Ma and prior to a low temperature hydrothermal event at 555 ± 15 Ma. It has a likely provenance on the Baltica continent, lacks any Grenville-Sveconorwegian detrital zircons, and thus cannot be part of the KNC which contains abundant detritus in this age range. Instead the Berlevåg Formation is interpreted as part of the Laksefjord Nappe Complex, which structurally underlies the KNC. Laser-ablation argon-argon dating also shows that late Caledonian (i.e. Scandian) tectonometamorphism affected both the KNC and its immediate footwall at c. 425 ± 15 Ma. This is corroborated by a step-heating argon-argon muscovite age of 424 ± 3 Ma which is interpreted as dating cooling. However, within two samples from the KNC, an earlier (Middle-Late Cambrian) metamorphic event is also recorded. A biotite-grade schist yielded an Ar-Ar inverse isochron age of 506 ± 17 Ma from whole rock surfaces, in which the mineral domains are too fine-grained to date individually. An early generation of muscovite from a coarser-grained amphibolite-facies sample yielded an inverse isochron of 498 ± 13 Ma. Both isochron ages have atmospheric argon intercept values. Previous studies have documented similar Cambrian ages in the Caledonian nappes below the KNC. These results suggest correlative tectonometamorphic events in the eastern KNC and its footwall at c. 500 Ma. This Cambrian event may reflect the arrival of the Kalak Nappe Complex as a previously constructed exotic mobile belt onto the margin of Baltica. Combined with recent studies from the western Kalak Nappe Complex, the results do not support the traditional constraint on the Finnmarkian Orogeny sensu stricto. However they vindicate classic tectonic models involving a Cambrian accretion event.  相似文献   
12.
张作衡 《地质学报》2008,82(11):1494-1503
本文通过对西天山地区比较典型的达巴特斑岩铜钼矿床矿区范围内出露上的英安岩和花岗斑岩进行了系统的岩石地球化学分析,对英安岩和流纹斑岩中的锆石进行了SHRIMP U-Pb定年研究,分别获得了315.9±5.9Ma和278.7±5.7Ma。岩石化学、微量以及稀土元素特征表明从英安岩到花岗斑岩,岩体具有明显的分异演化特征和很好的继承性。火山岩和次火山岩的精确定年为准确厘定火山岩形成的时限和地球动力学背景提供了依据。结合已有的Re-Os法获得的矿化年龄,表明晚石炭世末-早二叠世初(278.7±5.7Ma),西天山地区进入板块碰撞-板内伸展阶段,由于板内幔根的部分熔化,造成深源斑岩岩浆侵位,在达巴特矿区形成了由花岗斑岩、流纹斑岩和流纹质凝灰熔岩组成的椭圆形火山机构,并导致相关矿床的形成。  相似文献   
13.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
14.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   
15.
The Hong’an area (western Dabie Mountains) is the westernmost terrane in the Qinling-Dabie-Sulu orogen that preserves UHP eclogites. The ages of the UHP metamorphism have not been well constrained, and thus hinder our understanding of the tectonic evolution of this area. LA-ICPMS U–Pb age, trace element and Hf isotope compositions of zircons of a granitic gneiss and an eclogite from the Xinxian UHP unit in the Hong’an area were analyzed to constrain the age of the UHP metamorphism. Most zircons are unzoned or show sector zoning. They have low trace element concentrations, without significant negative Eu anomalies. These metamorphic zircons can be further subdivided into two groups according to their U–Pb ages, and trace element and Lu–Hf isotope compositions. One group with an average age of 239 ± 2 Ma show relatively high and variable HREE contents (527 ≥ LuN ≥ 14) and 176Lu/177Hf ratios (0.00008–0.000931), indicating their growth prior to a great deal of garnet growth in the late stage of continental subduction. The other group yields an average age of 227 ± 2 Ma, and shows consistent low HREE contents and 176Lu/177Hf ratios, suggesting their growth with concurrent garnet crystallization and/or recrystallization. These two groups of age are taken as recording the time of prograde HP to UHP and retrograde UHP–HP stages, respectively. A few cores have high Th/U ratios, high trace element contents, and a clear negative Eu anomaly. These features support a magmatic origin of these zircon cores. The upper intercept ages of 771 ± 86 and 752 ± 70 Ma for the granitic gneiss and eclogite, respectively, indicate that their protoliths probably formed as a bimodal suite in rifting zones in the northern margin of the Yangtze Block. Young Hf model ages (T DM1) of magmatic cores indicate juvenile (mantle-derived) materials were involved in their protolith formation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
16.
The current practice of slope stability analysis for a municipal solid waste (MSW) landfill usually overlooks the dependence of waste properties on the fill age or embedment depth. Changes in shear strength of MSW as a function of fill age were investigated by performing field and laboratory studies on the Suzhou landfill in China. The field study included sampling from five boreholes advanced to the bottom of the landfill, cone penetration tests and monitoring of pore fluid pressures. Twenty-six borehole samples representative of different fill ages (0 to 13 years) were used to perform drained triaxial compression tests. The field and laboratory study showed that the waste body in the landfill can be sub-divided into several strata corresponding to different ranges of fill age. Each of the waste strata has individual composition and shear strength characteristics. The triaxial test results showed that the MSW samples exhibited a strain-hardening and contractive behavior. As the fill age of the waste increased from 1.7 years to 11 years, the cohesion mobilized at a strain level of 10% was found to decrease from 23.3 kPa to 0 kPa, and the mobilized friction angle at the same strain level increasing from 9.9° to 26°. For a confinement stress level greater than 50 kPa, the shear strength of the recently-placed MSW seemed to be lower than that of the older MSW. This behavior was consistent with the cone penetration test results. The field measurement of pore pressures revealed a perched leachate mound above an intermediate cover of soils and a substantial leachate mound near the bottom of the landfill. The measurements of shear strength properties and pore pressures were utilized to assess the slope stability of the Suzhou landfill.  相似文献   
17.
Establishing the petrogenesis of volcanic and plutonic rocksis a key issue in unraveling the evolution of distinct subduction-relatedtectonic phases occurring along the South American margin. Thisis particularly true for Cenozoic times when large volumes ofmagma were produced in the Andean belt. In this study we havefocused on Oligo-Miocene magmatism in central Chile at 33°S.Our data include field and petrographic observations, whole-rockmajor and trace element analyses, U–Pb zircon dating,and Pb, Sr, and Hf isotope analyses of plagioclase, clinopyroxene,and zircon mineral separates. Combined with earlier dating resultsthe new zircon ages define a 28·8–5·2 Maperiod of plutonic and volcanic activity that ceased as a consequenceof flattening subduction of the Nazca–Farallon plate.Rare earth elements patterns are variable, with up to 92 timeschondrite concentrations for light rare earth elements yielding(La/Yb)N between 3·6 and 7·0, and an absence ofEu anomalies. Initial Pb isotope signatures are in the rangeof 18·358–19·023 for 206Pb/ 204Pb, 15·567–15·700for 207Pb/ 204Pb and 38·249–39·084 for 208Pb/204Pb. Initial 87Sr/ 86Sr are mostly in the range of 0·70369–0·70505,with two more radiogenic values at 0·7066. Initial Hfisotopic compositions of zircons yield exclusively positiveHfi ranging between + 6·9 and + 9·6. The newlydetermined initial isotope characteristics of the Oligo-Miocenemagmas suggest that the mantle source lithologies are differentfrom both those of Pacific mid-ocean ridge basalt and oceanisland basalt, plotting in the field of reference values forsubcontinental lithospheric mantle, characterized by moderatelarge ion lithophile element–high field strengh elementdepletion and high 238U/ 204Pb. A Hf model age of 2 Ga is estimatedfor the formation of the subcontinental mantle–continentalcrust assemblage in the region, suggesting that the initialSr and Pb isotope ratios inferred for the source of the Oligo-Mioceneparental magmas are the result of later Rb and U enrichmentcaused by mantle metasomatism. A time-integrated model Rb/Srof 0·039 and µ 16 are estimated for the sourceof the parental magmas, consistent with ratios measured in peridotitexenoliths from continental areas. Evolution from predominant(>90%) basaltic–gabbroic to andesitic–dioriticmagmas seems to involve a combination of (1) original traceelement differences in the metasomatized subcontinental mantle,(2) different degrees of partial melting and (3) fractionalcrystallization in the garnet- and spinel-peridotite stabilityfields. The genesis of more differentiated magmas reaching rhyolitic–graniticcompositions most probably also includes additional crystalfractionation at both shallow mantle depths and within the crust,possibly leading to some very minor assimilation of crustalmaterial. KEY WORDS: calc-alkaline magmatism; Oligo-Miocene; U–Pb dating; Sr–Pb–Hf isotopes; central Chile  相似文献   
18.
Beard  James S. 《Journal of Petrology》2008,49(5):1027-1041
If a magma is a hybrid of two (or more) isotopically distinctend-members, at least one of which is partially crystalline,separation of melt and crystals after hybridization will leadto the development of isotopic heterogeneities in the magmaas long as some of the pre-existing crystalline material (antecrysts)retains any of its original isotopic composition. This holdstrue whether the hybridization event is magma mixing as traditionallyconstrued, bulk assimilation, or melt assimilation. Once a magma-scaleisotopic heterogeneity is formed by crystal–melt separation,it is essentially permanent, persisting regardless of subsequentcrystallization, mixing, or equilibration events. The magnitudeof the isotopic variability resulting from crystal–meltseparation can be as large as that resulting from differentialcontamination, multiple isotopically distinct sources, or insitu isotopic evolution. In one model, a redistribution of one-thirdof the antecryst cargo yielded a crystal-enriched sample with87Sr/86Sr of 0·7058, whereas the complementary crystal-poorsample has 87Sr/86Sr of 0·7068. In other models, crystal-richsamples are enriched in radiogenic Sr. Isotopic heterogeneitiescan be either continuous (controlled by the modal distributionof crystals and melt) or discontinuous (when there is completeseparation of crystals and liquid). The first case may be exemplifiedby some isotopically zoned large-volume rhyolites, formed bythe eruptive inversion of a modally zoned magma chamber. Inthe latter case, the isotopic composition of any (for example)interstitial liquid will be distinct from the isotopic compositionof the bulk crystal fraction. The separation of such an interstitialliquid may explain the presence of isotopically distinct late-stageaplites in plutons. Crystal–melt separation provides anadditional option for the interpretation of isotopically zonedor heterogeneous magmas. This option is particularly attractivefor systems whose chemical variation is otherwise explicableby fractionation-dominated processes. Non-isotopic chemicalheterogeneities can also develop in this fashion. KEY WORDS: isotopic heterogeneity; zoning; hybrid magma; crystal separation; Sr isotopes; aplite; rhyolite  相似文献   
19.
华北克拉通北缘隆化地区S型花岗岩的独居石年龄图谱   总被引:1,自引:0,他引:1  
位于华北克拉通北缘中段的隆化S型花岗岩由石榴石黑云母花岗岩、石榴石花岗岩以及片麻理化的黑云母花岗岩组成。其主体岩性石榴石黑云母花岗岩SiO_2和Al_2O_3含量分别为64.09%~69.6%以及14.6%~16.13%,K_2O/Na_2O>1.0,A/CNK>1,0,Mg~#在20.76~34.89之间变化,具有明显的Nb、Ta、P、Ti和Sr亏损以及Rb、K和Th富集。石榴石黑云母花岗岩(样品JB6031-1)采用独居石电子探针U-Th-Pb化学法进行测年,获得了2553±120Ma、2180±42Ma和1854±24Ma三个年龄峰值。一颗独居石内部成分分带上6个分析点定年结果构成2553±120Ma的峰值年龄,这一年龄与我们最新获得的2506±7Ma和2541±8Ma(继承锆石年龄)LA-ICP-MS锆石U-Pb同位素年龄相似,我们将这一独居石年龄解释为继承独居石的年龄,表明在赤城-隆化断裂以北存在太古宙陆块,并且在后期构造-热事件中发生部分熔融形成S型花岗岩。该独居石颗粒幔部成分分带上10个分析点的测年结果揭示的峰值年龄为2181±42Ma,该年龄也是出现频率最高的年龄值,我们建议2181±42Ma为S型花岗岩的结晶年龄,反映了S型花岗岩的侵位时代。独居石颗粒外部成分分带上8个分析点的测年结果构成1854±24Ma的峰值年龄,该年龄与华北克拉通中部带的变质年龄接近,我们将其解释为S型花岗岩的变质年龄,表明华北克拉通北缘的构造演化与中部带的构造演化密切相关。  相似文献   
20.
大规模的则弄群火山岩呈带状近东西向展布于西藏冈底斯带中北部地区.对出露状况较好的措勤地区则弄群火山岩进行了锆石U-Pb定年,以建立其年代学格架便于区域对比.措勤地区则弄群火山岩多数锆石具有生长振荡环带,部分锆石显示核边结构.在措勤达雄北西部上覆于中二叠统下拉组灰岩的1件则弄群英安岩样品的LA-ICP-MS锆石U-Ph年龄为130±1Ma,1件则弄群流纹岩样品的SHRIMP锆石U-Pb年龄为129±3Ma;在措勤达雄北东部与下白垩统多尼组碎屑岩呈断层接触的1件则弄群英安岩样品中的锆石具有两组LA-ICP-MS锆石U-Pb年龄,最年轻的一组(包括增生边)为121±1Ma,较老的一组(包括核部)为131±1Ma;在措勤南西部1件则异群流纹岩样品的LA-ICP-MS锆石U-Pb年龄为111±1Ma,与措勤地区花岗岩类的侵位时代相当.这些高质量的锆石U-Pb年代学数据表明,措勤地区的则弄群火山作用很可能开始于约130Ma,停息于约110Ma,持续时间约20Ma.区域对比表明,东西延伸约1000km的则弄群火山作用同时发生在约130Ma.区域上目前的年代学数据结合同时代岩浆作用的分布特征表明,冈底斯带中北部地区早白垩世岩浆作用不太可能由新特提斯洋壳向北的低角度或平板俯冲产生.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号