Field observations of suspended particulate matter (SPM) in the Bohai Bay, China have not been widely reported. The aim of this paper is to describe the horizontal and vertical distribution of mass and volume concentrations of SPM, respectively, based on observed data at 312 stations in the northern Bohai Bay during summer of 2006. A numerical model ECOMSED coupled with a sediment transport module was also established to further discuss the mechanism of the thermocline effect on the vertical distribution of SPM. The mass concentrations of SPM exhibited high inshore values and low offshore values in the horizontal distribution; while in the vertical direction, characteristics of the volume concentration of SPM can be divided into two types: one with a sharp peak at depth of 10–15 m and another without. The peak value at the depth of the thermocline was resulted from concentrated phytoplankton. A numerical experiment further displayed that the thermocline can also prevent particles from being resuspended upward. 相似文献
AbstractAbstract In the first part of this study, theoretical analyses showed that the Gumbel distribution is quite unlikely to apply to hydrological extremes and that the extreme value distribution of type II (EV2) is a more consistent choice. Based on these theoretical analyses, an extensive empirical investigation is performed using a collection of 169 of the longest available rainfall records worldwide, each having 100–154 years of data. This verifies the theoretical results. In addition, it shows that the shape parameter of the EV2 distribution is constant for all examined geographical zones (Europe and North America), with value κ = 0.15. This simplifies the fitting and the general mathematical handling of the distribution, which become as simple as those of the Gumbel distribution. 相似文献
Examples of situations are presented where the grading of a soil changes during its lifetime either by crushing of particles
leading to an increase of fine material or by slow transport of fine particles with seepage leading to a decrease of fine
material. Such grading changes influence the basic constitutive properties of the soil, in particular properties such as critical
states which are dependent on the available range of densities of packing. Discrete element modelling is used to show the
dependence of critical state conditions on grading and the way in which the particle assembly seeks out new critical state
conditions as the grading changes. 相似文献