首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   18篇
  国内免费   30篇
地球物理   35篇
地质学   135篇
海洋学   3篇
综合类   3篇
自然地理   11篇
  2024年   1篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   9篇
  2012年   14篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   14篇
  2007年   6篇
  2006年   10篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   8篇
  1999年   12篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有187条查询结果,搜索用时 815 毫秒
141.
Hydrous minerals within the subducting oceanic slab are important hosts for water. Clarification of the stability field of hydrous minerals helps to understand transport and distribution of water from the surface to the Earth’s interior. We investigated the stability of brucite, a prototype of hydrous minerals, by means of electrical conductivity measurements in both open and closed systems at 3 GPa and temperatures up to 1300 K. Dramatic increase of conductivity in association with characteristic impedance spectra suggests that partial dehydration of single-crystal brucite in the open system with a low water fugacity occurs at 950 K, which is about 300 K lower than those previously defined by phase equilibrium experiments in the closed system. By contrast, brucite completely dehydrates at 1300 K in the closed system, consistent with previous studies. Partial dehydration may generate a highly defective structure but does not lead to the breakdown of brucite to periclase and water immediately. Water activity plays a key role in the stability of hydrous minerals. Low water activity (aH2O) caused by the high wetting behavior of the subducted oceanic slab at the transition zone depth may cause the partial dehydration of the dense hydrous magnesium silicates (DHMSs), which significantly reduces the temperature stability of DHMS (this mechanism has been confirmed by previous study on super hydrous phase B). As a result, the transition zone may serve as a ‘dead zone’ for DHMSs, and most water will be stored in wadsleyite and ringwoodite in the transition zone.  相似文献   
142.
The uvarovite-andradite and uvarovite-andradite-grossular solid-solution series are rare in nature. The discovery of uvarovite-andradite in serpentinite and rodingite from the ultra-high pressure (UHP) metamorphic belt in southwestern Tianshan provided an opportunity to investigate its behavior in the subduction zone. Uvarovite (defined as chromium-garnet) from serpentinite is homogeneous in a single grain, covering compositions in the uvarovite-andradite solid solution series of Adr58–66Uv33–41, with few grossular components. Uvarovite from rodingites contain various Cr2O3 contents (1.7–17.9 wt%) and mineral compositions being in the range of Adr21–31Uv41–50Grs22–37, Adr52–90Uv5–25Grs0–21 and Adr19–67Uv3–63Grs13–42. Discontinuous chemical variation of uvarovite from core to rim indicates that uvarovite formed by consuming andradite and chromite, which could provide Ca, Cr, Al and Fe. Raman signals of water were identified for uvarovite from both serpentinite and rodingite, with high water content in uvarovite from serpentinite. The high pressure mineral assemblage, as well as the association with perovskite, indicated that the studied uvarovite from serpentinite and rodingite was formed through high pressure metamorphism, during the subduction zone serpentinization and rodingitization. High alkaline and highly reduced fluids released from serpentinization or rodingitization in the oceanic subduction zone promote the mobility of chromium and enable its long-distance migration.  相似文献   
143.
贺兰山北段孔兹岩系中最有代表性的两类岩石 :变粒岩及富铝片麻岩天然块状样品的脱水熔融实验研究表明 ,在不同的温度压力条件 ,两类岩石产生明显不同的变质反应 ,其中变粒岩类在所有的实验条件下均产生 Bt+Pl+Qz→ Hy+Kf+M(熔体 )的反应 ,而富铝片麻岩在不同压力下出现不同的变质反应 :0 .4 GPa条件下发生 :Bt+Pl+Qz→ Hy+Kf+M;0 .6 GPa条件下发生 :Bt+Qz→ Sil+Kf+M;0 .8GPa条件下发生 :Bt→ Cud+Kf+M。本文认为制约变质反应的主要因素是岩石的结构构造 ,因此在讨论高级变质作用时更要强调压力的重要性  相似文献   
144.
Blueschist-bearing Osayama serpentinite melange develops beneath a peridotite body of the Oeyama ophiolite which occupies the highest position structurally in the central Chugoku Mountains. The blueschist-facies tectonic blocks within the serpentinite melange are divided into the lawsonite–pumpellyite grade, lower epidote grade and higher epidote grade by the mineral assemblages of basic schists. The higher epidote-grade block is a garnet–glaucophane schist including eclogite-facies relic minerals and retrogressive lawsonite–pumpellyite-grade minerals. Gabbroic blocks derived from the Oeyama ophiolite are also enclosed as tectonic blocks in the serpentinite matrix and have experienced a blueschist metamorphism together with the other blueschist blocks. The mineralogic and paragenetic features of the Osayama blueschists are compatible with a hypothesis that they were derived from a coherent blueschist-facies metamorphic sequence, formed in a subduction zone with a low geothermal gradient (~ 10°C/km). Phengite K–Ar ages of 16 pelitic and one basic schists yield 289–327 Ma and concentrate around 320 Ma regardless of protolith and metamorphic grade, suggesting quick exhumation of the schists at ca 320 Ma. These petrologic and geochronologic features suggest that the Osayama blueschists comprise a low-grade portion of the Carboniferous Renge metamorphic belt. The Osayama blueschists indicate that the 'cold' subduction type (Franciscan type) metamorphism to reach eclogite-facies and subsequent quick exhumation took place in the northwestern Pacific margin in Carboniferous time, like some other circum-Pacific orogenic belts (western USA and eastern Australia), where such subduction metamorphism already started as early as the Ordovician.  相似文献   
145.
Abstract In Japan and Korea, some Lower Cretaceous terrigenous clastic rocks yield detrital chromian spinels. These chromian spinels are divided into two groups: low-Ti and high-Ti. The Sanchu Group and the Yuno Formation in Japan have both groups, whereas the Nagashiba Formation in Japan and the Jinju Formation in Korea have only the low-Ti spinels. High-Ti spinels are thought to have originated in intraplate-type basalt. Low-Ti spinels (higher than 0.6 Cr#) were probably derived from peridotites, which are highly correlated with an arc setting derivation and possibly with a forearc setting derivation. Low-Ti spinels are seen in the Sanchu Group, the Nagashiba Formation and the Jinju Formation. Low-Ti spinels from the Yuno Formation are characterized by low Cr# (less than 0.6) and these chromian spinels appear to have been derived from oceanic mantle-type peridotite, including backarc. According to maps reconstructing the pre-Sea of Japan configuration of the Japanese Islands and the Korean Peninsula, the Korean Cretaceous basin was comparatively close to the Southwest Japan depositional basins. It is possible that these Lower Cretaceous systems were sediments mainly in the forearc and partly in the backarc regions. The peridotite might have infiltrated along major tectonic zones such as the Kurosegawa Tectonic Zone (= serpentinite melange zone) in which left lateral movement prevailed during the Early Cretaceous.  相似文献   
146.
High-pressure experiments on a natural pelite have been conducted at 2–11-GPa pressures in order to evaluate contributions of subducted sediments to arc and ocean island magmatism. Obtained phase relations suggest that, at least in modern subduction zones, subsolidus dehydration of chlorite and phengitic muscovite in the subducted sediments, rather than partial melting, is a predominant process in overprinting sediment components onto the magma source region. Trace element compositions of sediment-derived fluids are estimated based on dehydration experiments at 5.5 GPa and 900/1300°C. Pb is effectively transported by fluids relative to other elements. This results in the Pb enrichment for arc basalts by fluids, generated by the dehydration of subducted sediments, together with altered mid-ocean ridge basalt (MORB), and complementary depletion of Pb in subducted sediments. Inferred arc magma compositions obtained by model calculations based on the present experimental results agree well with a natural primitive arc basalt composition. A large increase in the U/Pb ratio in the subducted sediments at deeper levels than major dehydration depths results in a high Pb isotopic ratio through radioactive decay after long periods of isolation. Combined with other isotopic ratios such as Sr and Nd, it is possible to produce the EM II source, one of the enriched geochemical reservoirs for ocean island basalt magmas, by mixing of a small amount of subducted sediments with depleted or primitive mantle.  相似文献   
147.
在科尔沁不同类型沙地选择几种优势植物进行人工自然脱水、干旱和高温处理,测定了保护酶(超氧化物歧化酶——SOD,过氧化物酶——POD,过氧化氢酶——CAT)活性变化,研究了植物保护酶与其抗膜脂过氧化间关系及其在抗逆中的作用。结果表明,胁迫条件下SODPOD活性增高,与MDA含量增加成正相关,CAT活性下降与MDA含量增加成负相关。在胁迫处理中流动沙地的沙米、欧亚旋覆花叶片SODPOD活性增高,MDA含量增高,保护酶清除速率低于氧自由基积累速率导致的膜脂过氧化可能是植株在胁迫中枯死的原因之一;在胁迫处理中半固定沙地的差不嘎蒿SODPOD活性略上升,但活力较低,其抗逆可能依赖多种途径及生理变化的保护;固定沙地的白草、狗尾草胁迫前POD活性较高,胁迫后SODPOD活性增加幅度较大,是一真正的依赖保护酶进行抗逆的植物类型。干旱、高温胁迫下SODPOD协同作用在沙生植物抗膜脂过氧化,保护膜的完整性上起重要作用。  相似文献   
148.
周瑞莲  王海鸥 《中国沙漠》1999,19(Z1):59-64
在高温、自然脱水和干旱处理中不同类型沙生植物叶形态、相对含水量(RWC)、质膜相对透性、丙二醛(MDA)含量变化不同,其中流动沙地的沙米、欧亚旋覆花在胁迫中MDA积累,RWC下降快,膜透性增大,复水后MDA增多而植株死亡;半固定沙地的差不嘎蒿和固定沙地的狗尾草、白草,胁迫下MDA积累,RWC下降,但复水后RWC上升、膜透性下降,MDA下降,植株存活。自然脱水处理中植物细胞膜相对透性与膜脂过氧化成正相关,但细胞膜受损程度与MDA积累的绝对量无密切关系,而与膜忍受膜脂过氧化能力相关。  相似文献   
149.
Pseudosections for two sediments and one basalt calculated in the system K2O–Na2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2–H2O for the P–T range 10 to 35 kbar, 300 to 900°C give useful insights into the amount of H2O released from oceanic crust in subduction zones. In cold subduction zones (20 kbar–300°C to 35 kbar–500°C) hydrous minerals storing 3 to 4 wt% H2O are still present in metasediments at depths of 120 km. In the same environment, metabasite releases 1 wt% H2O in the depth range 100 to 120 km, but 4.5 wt% H2O is transported to greater depths. In hot subduction zones (300°C hotter than the cold subduction zone at 100 km depth), dehydration events of metasediments in the depth range 50 to 80 km correspond to the breakdown of chlorite and paragonite. In the calculations no further water is released at greater depths because the modal content of phengite, the only hydrous mineral phase at these depths, remains almost constant. For the same P–T path, metabasite shows continuous dehydration between 40 and 80 km releasing almost 3 wt% H2O. At 120 km depth less than 0.4 wt% of H2O remains. In an average modern subduction zone (~6°C/km) most dehydration of sediments occurs at depths of 70 to 100 km and that of basalts at depths of 80 to 120 km. Only 1.3 wt% H2O in metasediments and 1.6 wt% H2O in metabasalt has the potential to be subducted to depths greater than 120 km. The dehydration behavior of sediments concurs with the generally held idea that subduction zone fluids are most effectively transported to great depths by cold subduction. In hot subduction zones, such as those characteristic of early Earth, most H2O carried by oceanic crust is liberated at depths less than 120 km and, thus, would not contribute to island‐arc magmatism.  相似文献   
150.
俯冲板块的深部脱水使得上覆地幔含水, 从而降低含水地幔的熔点, 导致上覆地幔部分熔融。 部分熔融的地幔柱一旦喷发到地表就是俯冲带火山, 也形成新的地壳。 相对于周围的地幔来讲, 具有较小密度和黏度的部分熔融地幔的时空活动性就控制着俯冲带火山的时空分布特征。 本文主要回顾近年来运用三维热力学岩石力学模型数值模拟研究与板片脱水相关的俯冲带火山活动的时空分布特性。 结果表明, 部分熔融地幔的有效黏度和密度是影响俯冲板片之上的三维地幔柱横向分布特征的主要因素。 高黏度的部分熔融地幔(1020~1021 Pa·s )易于形成近平行于海沟的、 长波长(70~100 km)的、 薄的波状地幔柱; 低黏度(1018~1019 Pa·s )的熔融地幔易于形成平行于海沟的, 短波长(30~50 km)的蘑菇状地幔柱和垂直于海沟的山脊状地幔柱。 当部分熔融地幔和周围地幔的密度相差小于50 kg/m3时, 在俯冲板片之上只能形成长波长低幅度(宽50~100 km, 高10~15 km)的地幔山丘。 岩浆产率随着时间的变化反映了火山活动的生命周期性。 板块俯冲速度会影响地幔柱形成的深度和范围大小。 高效率熔融提取会增加新地壳增长总量。 低的板块俯冲速度和低的熔融提取效率会增加上地壳(花岗岩质)和中地壳(英安岩质)化学成分的比例。 数值模拟结果可以很好地解释如日本东北、 新西兰、 南阿拉斯加俯冲区火山的横向分布特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号