首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1362篇
  免费   238篇
  国内免费   347篇
测绘学   100篇
大气科学   283篇
地球物理   429篇
地质学   594篇
海洋学   193篇
天文学   12篇
综合类   70篇
自然地理   266篇
  2024年   7篇
  2023年   40篇
  2022年   50篇
  2021年   57篇
  2020年   76篇
  2019年   73篇
  2018年   68篇
  2017年   69篇
  2016年   71篇
  2015年   83篇
  2014年   101篇
  2013年   122篇
  2012年   86篇
  2011年   75篇
  2010年   66篇
  2009年   103篇
  2008年   70篇
  2007年   81篇
  2006年   105篇
  2005年   74篇
  2004年   70篇
  2003年   55篇
  2002年   53篇
  2001年   39篇
  2000年   29篇
  1999年   22篇
  1998年   34篇
  1997年   31篇
  1996年   27篇
  1995年   24篇
  1994年   16篇
  1993年   19篇
  1992年   7篇
  1991年   15篇
  1990年   3篇
  1989年   9篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有1947条查询结果,搜索用时 15 毫秒
201.
This paper discusses the analysis and modelling of the hydrological system of the basin of the Kara River, a transboundary river in Togo and Benin, as a necessary step towards sustainable water resources management. The methodological approach integrates the use of discharge parameters, flow duration curves and the lumped conceptual model IHACRES. A Sobol sensitivity analysis is performed and the model is calibrated by applying the shuffled complex evolution algorithm. Results show that discharge generation in three nested catchments of the basin is affected by landscape physical characteristics. The IHACRES model adequately simulates the rainfall–runoff dynamics in the basin with a mean modified Nash-Sutcliffe efficiency measure of 0.6. Modelling results indicate that parameters controlling rainfall transformation to effective rainfall are more sensitive than those routing the streamflow. This study provides insights into understanding the catchment’s hydrological system. Nevertheless, further investigations are required to better understand detailed runoff generation processes.
EDITOR M.C. Acreman; ASSOCIATE EDITOR N Verhoest  相似文献   
202.
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so‐called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high‐fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow‐based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land‐surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.  相似文献   
203.
Complex hydrological models are being increasingly used nowadays for many purposes such as studying the impact of climate and land‐use change on water resources. However, building a high‐fidelity model, particularly at large scales, remains a challenging task, due to complexities in model functioning and behaviour and uncertainties in model structure, parameterization, and data. Global sensitivity analysis (GSA), which characterizes how the variation in the model response is attributed to variations in its input factors (e.g., parameters and forcing data), provides an opportunity to enhance the development and application of these complex models. In this paper, we advocate using GSA as an integral part of the modelling process by discussing its capabilities as a tool for diagnosing model structure and detecting potential defects, identifying influential factors, characterizing uncertainty, and selecting calibration parameters. Accordingly, we conduct a comprehensive GSA of a complex land surface–hydrology model, Modélisation Environmentale–Surface et Hydrologie (MESH), which combines the Canadian land surface scheme with a hydrological routing component, WATROUTE. Various GSA experiments are carried out using a new technique, called Variogram Analysis of Response Surfaces, for alternative hydroclimatic conditions in Canada using multiple criteria, various model configurations, and a full set of model parameters. Results from this study reveal that, in addition to different hydroclimatic conditions and SA criteria, model configurations can also have a major impact on the assessment of sensitivity. GSA can identify aspects of the model internal functioning that are counter‐intuitive and thus help the modeller to diagnose possible model deficiencies and make recommendations for improving development and application of the model. As a specific outcome of this work, a list of the most influential parameters for the MESH model is developed. This list, along with some specific recommendations, is expected to assist the wide community of MESH and Canadian land surface scheme users, to enhance their modelling applications.  相似文献   
204.
Eutrophication of aquatic ecosystems is one of the most pressing water quality concerns in the United States and around the world. Bank erosion has been largely overlooked as a source of nutrient loading, despite field studies demonstrating that this source can account for the majority of the total phosphorus load in a watershed. Substantial effort has been made to develop mechanistic models to predict bank erosion and instability in stream systems; however, these models do not account for inherent natural variability in input values. To quantify the impacts of this omission, uncertainty and sensitivity analyses were performed on the Bank Stability and Toe Erosion Model (BSTEM), a mechanistic model developed by the US Department of Agriculture – Agricultural Research Service (USDA‐ARS) that simulates both mass wasting and fluvial erosion of streambanks. Generally, bank height, soil cohesion, and plant species were found to be most influential in determining stability of clay (cohesive) banks. In addition to these three inputs, groundwater elevation, stream stage, and bank angle were also identified as important in sand (non‐cohesive) banks. Slope and bank height are the dominant variables in fluvial erosion modeling, while erodibility and critical shear stress had low sensitivity indices; however, these indices do not reflect the importance of critical shear stress in determining the timing of erosion events. These results identify important variables that should be the focus of data collection efforts while also indicating which less influential variables may be set to assumed values. In addition, a probabilistic Monte‐Carlo modeling approach was applied to data from a watershed‐scale sediment and phosphorus loading study on the Missisquoi River, Vermont to quantify uncertainty associated with these published results. While our estimates aligned well with previous deterministic modeling results, the uncertainty associated with these predictions suggests that they should be considered order of magnitude estimates only. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
205.
Seismic behavior of gravity dams has long been evaluated using a representative two‐dimensional (2D) system. Formulated for the gravity dams built in wide canyons, the assumption is nevertheless utilized extensively for almost all concrete dams due to the established procedures as well as the expected computational costs of a three‐dimensional model. However, a significant number of roller‐compacted concrete dams, characterized as such systems, do not conform to the basic assumptions of these methods by violating the conditions on canyon dimensions and joint‐spacing/details. Based on the premise that the 2D modeling assumption is overstretched for practical purposes in a variety of settings, the purpose of this study is to critically evaluate the use of 2D modeling for the prediction of the seismic demands on these systems. Using a rigorous soil–structure interaction approach, the difference between the two and three‐dimensional response for gravity dams was investigated first in the frequency domain for a range of canyon widths and foundation to dam moduli ratios. Then, the time domain differences between the crest displacements and the maximum principal stress were obtained using 70 different ground motions in order to show the possible bias introduced into the analysis results due to the modeling approach. The results of the study show that even for relatively wide canyons, the 2D analysis can lead to misleading predictions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
206.
刘凌  崔广柏 《湖泊科学》2000,12(3):255-264
生物处理是一种经济有效处理土壤水环境中有机污染物的手段,本文在研究土地生物处理过程的基础上,建立了综合描述有机污染物在土壤-水-微生物系统中扩散、吸附/解吸、屏蔽和生物降解过程的数学模型。为确定模型中各参数在模型计算中的作用和相对重要性,进行了参数灵敏度分析,预计数学模型可以定量预测有机污染物进行土地生物处理所需的要时间和程度,为构建土地生物处理工程提供参考。  相似文献   
207.
Geomorphic effectiveness has been an influential concept in geomorphology since its introduction by Reds Wolman and John Miller in 1960. It provided a much needed framework to assess the significance of an event by comparing event magnitude to the resultant geomorphic effects. Initially, this concept was applied primarily in river channels, under the linear assumption that geomorphic responses to similarly sized flood events will be consistent. Numerous authors have since attempted to quantify a direct, proportional relationship between event magnitude and different forms of geomorphic response in a variety of geomorphic settings. In doing so, these investigations applied an array of metrics that were difficult to compare across different spatiotemporal scales, and physiographic and geomorphic environments. Critically, the emergence of other geomorphic concepts such as sensitivity, connectivity, thresholds, and recovery has shown that relationships between causes (events) and geomorphic effects (responses) are often complex and non‐linear. This paper disentangles the complex historical development of the geomorphic effectiveness concept and reviews the utility of various metrics for quantifying effectiveness. We propose that total energy (joules) is the most appropriate metric to use for quantifying the magnitude of disturbance events (cause) and volumetric sediment flux associated with landform modification is the most appropriate metric for quantifying geomorphic effects. While both metrics are difficult to quantify, they are the only ones which facilitate comparison across a range of spatiotemporal scales (comparability) in a variety of geomorphic environments (flexibility). The geomorphic effectiveness concept can continue to be useful provided that geomorphologists use flexible and comparable metrics. Today, geomorphologists are better prepared to consider the influence of non‐linear processes on determinations of geomorphic effectiveness, allowing investigators to not only determine if a disturbance event was effective but also to explain why or why not. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
208.
An effective strategy of seismic retrofitting consists of installing nonlinear viscous dampers between the existing building, with insufficient lateral resistance, and some auxiliary towers, specially designed and erected as reaction structures. This allows improving the seismic performance of the existing building without any major alteration to its structural and nonstructural elements, which makes this approach particularly appealing for buildings with heritage value. In this paper, the nonlinear governing equations of the coupled lateral‐torsional seismic motion are derived from first principles for the general case of a multistory building connected at various locations in plan and in elevation to an arbitrary number of multistory towers. This formulation is then used to assess the performance of the proposed retrofitting strategy for a real case study, namely, a 5‐story student hall of residence in the city of Messina, Italy. The results of extensive time‐history analyses highlight the key design considerations associated with the stiffness of the reaction towers and the mechanical parameters of the nonlinear viscous dampers, confirming the validity of this approach.  相似文献   
209.
A. Veihe  J. Quinton 《水文研究》2000,14(5):915-926
Knowledge about model uncertainty is essential for erosion modelling and provides important information when it comes to parameterizing models. In this paper a sensitivity analysis of the European soil erosion model (EUROSEM) is carried out using Monte Carlo simulation, suitable for complex non‐linear models, using time‐dependent driving variables. The analysis revealed some important characteristics of the model. The variability of the static output parameters was generally high, with the hydrologic parameters being the most important ones, especially saturated hydraulic conductivity and net capillary drive followed by the percentage basal area for the hydrological and vegetation parameters and detachability and cohesion for the soil erosion parameters. Overall, sensitivity to vegetation parameters was insignificant. The coefficient of variation for the sedigraph was higher than for the hydrograph, especially from the beginning of the rainstorm and up to the peak, and may explain difficulties encountered when trying to match simulated hydrographs and sedigraphs with observed ones. The findings from this Monte Carlo simulation calls for improved within‐storm modelling of erosion processes in EUROSEM. Information about model uncertainty will be incorporated in a new EUROSEM user interface. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
210.
利用控制点三维信息标定机载双天线干涉SAR参数   总被引:1,自引:1,他引:0  
张薇  向茂生  吴一戎 《测绘学报》2010,39(4):370-377
采用基于敏感度方程的方法,研究基于三维重建模型下的机载双天线干涉SAR系统的干涉参数定标问题.干涉参数定标是生成高精度数字高程模型的关键.本文修正了Madsen提出的干涉SAR三维重建的视向量正交分解算法,采用电磁波波前的球面波模型,加入了载机的姿态旋转,构建一种新的干涉SAR三维重建模型.利用各干涉参数对控制点三维信息的不同的敏感性,提出分别利用地面控制点三维信息,对各干涉参数进行定标.并利用中国科学院电子学研究所自主设计、研制的机载干涉SAR系统数据,进行定标处理实验验证.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号