全文获取类型
收费全文 | 7252篇 |
免费 | 1136篇 |
国内免费 | 1528篇 |
专业分类
测绘学 | 54篇 |
大气科学 | 942篇 |
地球物理 | 2359篇 |
地质学 | 2399篇 |
海洋学 | 2771篇 |
天文学 | 72篇 |
综合类 | 261篇 |
自然地理 | 1058篇 |
出版年
2024年 | 49篇 |
2023年 | 137篇 |
2022年 | 201篇 |
2021年 | 297篇 |
2020年 | 328篇 |
2019年 | 364篇 |
2018年 | 332篇 |
2017年 | 310篇 |
2016年 | 340篇 |
2015年 | 335篇 |
2014年 | 433篇 |
2013年 | 533篇 |
2012年 | 385篇 |
2011年 | 430篇 |
2010年 | 372篇 |
2009年 | 446篇 |
2008年 | 522篇 |
2007年 | 503篇 |
2006年 | 509篇 |
2005年 | 341篇 |
2004年 | 364篇 |
2003年 | 340篇 |
2002年 | 259篇 |
2001年 | 250篇 |
2000年 | 215篇 |
1999年 | 214篇 |
1998年 | 178篇 |
1997年 | 172篇 |
1996年 | 140篇 |
1995年 | 105篇 |
1994年 | 93篇 |
1993年 | 85篇 |
1992年 | 75篇 |
1991年 | 45篇 |
1990年 | 60篇 |
1989年 | 33篇 |
1988年 | 32篇 |
1987年 | 13篇 |
1986年 | 10篇 |
1985年 | 20篇 |
1984年 | 9篇 |
1983年 | 19篇 |
1982年 | 5篇 |
1981年 | 5篇 |
1980年 | 2篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1973年 | 1篇 |
1954年 | 1篇 |
排序方式: 共有9916条查询结果,搜索用时 15 毫秒
791.
The study of overland flow of water over an erodible sediment leads to a coupled model describing the evolution of the topographic
elevation and the depth of the overland water film. The spatially uniform solution of this model is unstable, and this instability
corresponds to the formation of rills, which in reality then grow and coalesce to form large-scale river channels. In this
paper we consider the deduction and mathematical analysis of a deterministic model describing river channel formation and
the evolution of its depth. The model involves a degenerate nonlinear parabolic equation (satisfied on the interior of the
support of the solution) with a super-linear source term and a prescribed constant mass. We propose here a global formulation
of the problem (formulated in the whole space, beyond the support of the solution) which allows us to show the existence of
a solution and leads to a suitable numerical scheme for its approximation. A particular novelty of the model is that the evolving
channel self-determines its own width, without the need to pose any extra conditions at the channel margin. 相似文献
792.
Serafim E. Poulos Vasilios Kapsimalis Christos Tziavos Theodora Paramana 《Continental Shelf Research》2008
The sedimentology of the floor of the Amvrakikos Gulf, a river influenced, semi-enclosed relatively shallow-silled embayment, lying along the northeastern Hellenic coast of the Ionian Sea (eastern Mediterranean Sea), is investigated with respect to its origin (terrigenous and/or biogenic), the prevailing oceanographic conditions and human interference. Nearshore (water depths approximately <10 m) sediments, especially along the northern margin of the Gulf, consist mostly of biogenic sands, as the result of water exchange between the freshwater lagoonal waters and the surface waters of the Gulf. An exception to this is the mouth area of the Arachthos River, which is dominated by the terrigenous riverine sediment influx. The offshore (water depths >10 m) bottom surficial sediments are fine-grained (silty and clayey) of terrigenous origin (>70%); this is attributed to the inter-seasonal, strong two-layer stratification of the water column in the Gulf which restricts benthic productivity by inhibiting the downward flux of surface eutrophic waters and the development of nearbed disoxic conditions in water depths >40 m. River damming has reduced also the riverine terrigenous sediment supply; this is more profound in the case of the Arachthos River where not only the deltaic evolution has been affected, but also the textural character of the seabed sediments of the mouth area has been altered; this is expected to influence the benthic communities of prodeltaic surficial sediment. 相似文献
793.
This paper describes and analyses a hillslope–channel slope failure event that occurred at Wet Swine Gill, Lake District, northern England. This comprised a hillslope slide (180 m3, c. 203 ± 36 t), which coupled with the adjacent stream, resulting in a channelized debris flow and fluvial flood. The timing of the event is constrained between January and March 2002. The hillslope failure occurred in response to a rainfall/snowmelt trigger, on ground recently disturbed by a heather moorland fire and modified by artificial drainage. Slide and flow dynamics are estimated using reconstructed velocity and discharge values along the sediment transfer path. There is a rapid downstream reduction in both maximum velocity, from 9·8 to 1·3 m s?1; and maximum discharge, ranging from 33·5 to 2·4 m3 s?1. A volumetric sediment budget quantified a high degree of coupling between the hillslope and immediate channel (~92%: 167 m3), but virtually all of the sediment was retained in the first‐order tributary channel. Approximately 44% (81 m3) of the slide volume was retained in the run‐up deposit, and termination of the debris flow prior to the main river meant that the remainder did not discharge into the fluvial system downstream. These results suggest poor transmission of sediment to the main river at the time of the event, but importantly an increase in available material for post‐event sediment transfer processes within the small upland tributary. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
794.
Organic matter of nine surface sediments from the Daya Bay was Soxhlet-extracted with a mixture of 2:1 (v/v) dichloromethane-methanol and separated into five fractions: non-aromatic hydrocarbons, aromatic hydrocarbons, ketones, alcohols, and fatty acids and asphaltenes, and analyzed to determine their bulk and biomarker composition. Marine autogenic input appears to be a major source of organic matter. Generally, non-aromatic hydrocarbons are the most dominant fraction of solvent-extractable organic matter (EOM) followed by the other four fractions in decreasing amounts: fatty acids and asphaltenes, ketones, alcohols and aromatic hydrocarbons. On average, both non-aromatic hydrocarbon fraction and fatty acid and asphaltene fraction account for approximately 40% of EOM. The sources of acyclic methyl ketones, alkanols and fatty acids were examined. For n-alkan-2-ones, allochthonous input is a more important source than marine autogenetic input; the reverse is true for n-fatty acids; for n-alkanols, allochthonous and autogenetic inputs seem comparable. Both n-alkan-2-ones and n-fatty acids in the surface sediments of different areas appear to be derived from common sources. 相似文献
795.
The saltation–abrasion model predicts rates of river incision into bedrock as an explicit function of sediment supply, grain size, boundary shear stress and rock strength. Here we use this experimentally calibrated model to explore the controls on river longitudinal profile concavity and relief for the simple but illustrative case of steady‐state topography. Over a wide range of rock uplift rates we find a characteristic downstream trend, in which upstream reaches are close to the threshold of sediment motion with large extents of bedrock exposure in the channel bed, while downstream reaches have higher excess shear stresses and lesser extents of bedrock exposure. Profile concavity is most sensitive to spatial gradients in runoff and the rate of downstream sediment fining. Concavity is also sensitive to the supply rate of coarse sediment, which varies with rock uplift rate and with the fraction of the total sediment load in the bedload size class. Variations in rock strength have little influence on profile concavity. Profile relief is most sensitive to grain size and amount of runoff. Rock uplift rate and rock strength influence relief most strongly for high rates of rock uplift. Analysis of potential covariation of grain size with rock uplift rate and rock strength suggests that the influence of these variables on profile form could occur in large part through their influence on grain size. Similarly, covariation between grain size and the fraction of sediment load in the bedload size class provides another indirect avenue for rock uplift and strength to influence profile form. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
796.
Mira Markovaara-Koivisto Antti E.K. Ojala Jussi Mattila Ilmo Kukkonen Ilkka Aro Arto Pullinen Pekka Hänninen Maarit Middleton Aleksi Sutinen Juha Majaniemi Timo Ruskeeniemi Raimo Sutinen 《地球表面变化过程与地形》2020,45(12):3011-3024
The cyclic nature of glaciations and related postglacial faulting represents a risk for the deep geological disposal of spent nuclear fuel in areas likely to be affected by future glaciations. Seismic history was therefore studied by means of detecting geomorphological structures on airborne laser scanning digital elevation models and underground by excavating in an esker and trenching across a postglacial fault located in northern Fennoscandia. OLS dating and assessing the geomorphological structures was used for timing of the seismic history. The results suggest that the faulting of different segments in the Pasmajärvi complex is due to at least two late Weichselian events, which probably occurred both subglacially and postglacially. The most reliable input for the moment magnitude estimates was vertical slip profiles, and therefore these estimates (MW ≈ 6.4–6.9) are suggested. © 2020 John Wiley & Sons, Ltd. 相似文献
797.
Edwin R.C. Baynes Dimitri Lague Philippe Steer Stéphane Bonnet Luc Illien 《地球表面变化过程与地形》2020,45(14):3714-3731
Sediment supply (Qs) is often overlooked in modelling studies of landscape evolution, despite sediment playing a key role in the physical processes that drive erosion and sedimentation in river channels. Here, we show the direct impact of the supply of coarse-grained, hard sediment on the geometry of bedrock channels from the Rangitikei River, New Zealand. Channels receiving a coarse bedload sediment supply are systematically (up to an order of magnitude) wider than channels with no bedload sediment input for a given discharge. We also present physical model experiments of a bedrock river channel with a fixed water discharge (1.5 l min−1) under different Qs (between 0 and 20 g l−1) that allow the quantification of the role of sediment in setting the width and slope of channels and the distribution of shear stress within channels. The addition of bedload sediment increases the width, slope and width-to-depth ratio of the channels, and increasing sediment loads promote emerging complexity in channel morphology and shear stress distributions. Channels with low Qs are characterized by simple in-channel morphologies with a uniform distribution of shear stress within the channel while channels with high Qs are characterized by dynamic channels with multiple active threads and a non-uniform distribution of shear stress. We compare bedrock channel geometries from the Rangitikei and the experiments to alluvial channels and demonstrate that the behaviour is similar, with a transition from single-thread and uniform channels to multiple threads occurring when bedload sediment is present. In the experimental bedrock channels, this threshold Qs is when the input sediment supply exceeds the transport capacity of the channel. Caution is required when using the channel geometry to reconstruct past environmental conditions or to invert for tectonic uplift rates, because multiple configurations of channel geometry can exist for a given discharge, solely due to input Qs. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd 相似文献
798.
Huan Mi Cédric G. Fichot Karin R. Bryan Gang Qiao Sergio Fagherazzi 《地球表面变化过程与地形》2020,45(15):3780-3790
Rapid water level rise due to climate change has the potential to remobilize loose sediments along shorelines and increase the turbidity of nearshore waters, thereby impacting water quality and aquatic ecosystem health. Siling Lake is one of the largest and most rapidly expanding lakes on the Tibetan Plateau. Between 2000 and 2017, this lake experienced an increase in water level of about 8 m and a doubling in water turbidity. Here, using this lake as a study site, we used a wave model and high-resolution remote sensing of turbidity (Landsat-8) to assess the potential connection between water-level rise, enhanced wind-driven sediment resuspension and water turbidity. Our analysis revealed that strong bottom shear stresses triggered by wind-generated waves over newly flooded areas were related to an increase in water turbidity. The spatial variability of Siling Lake turbidity showed a strong dependence on local wind characteristics and fetch. Two factors combined to drive the increase in turbidity: (1) high wave energy leading to high bottom shear stresses, and (2) flooding of unvegetated shallow areas. Using a new relationship between wave energy and turbidity developed here, we expect the increase in turbidity of Siling Lake to taper off in the near future due to the steep landscape surrounding the lake that will prevent further flooding. Our results imply that rising water levels along the coast are not only expected to influence terrestrial ecosystems but could also change water quality. The methodology presented herein could be applied to other shorelines affected by a rapid increase in water level. © 2020 John Wiley & Sons, Ltd. 相似文献
799.
Bed material transport at river bifurcations is crucial for channel stability and downstream geomorphic dynamics. However, measurements of bed material transport at bifurcations of large alluvial rivers are difficult to make, and standard estimates based on the assumption of proportional partitioning of flow and bedload transport at bifurcations may be erroneous. In this study, we employed a combined approach based on observed topographic change (erosion/deposition) and bed material transport predicted from a one-dimensional model to investigate bed material fluxes near the engineering-controlled Mississippi-Atchafalaya River diversion, which is of great importance to sediment distribution and delivery to Louisiana's coast. Yang's (1973) sediment transport equation was utilized to estimate daily bed material loads upstream, downstream, and through the diversion during 2004–2013. Bathymetric changes in these channels were assessed with single beam data collected in 2004 and 2013. Results show that over the study period, 24% of the Mississippi River flow was diverted into the Atchafalaya River, while the rest remained in the mainstem Mississippi. Upstream of the diversion, the bed material yield was predicted to be 201 million metric tons (MT), of which approximately 35 MT (i.e., 17%) passed through the bifurcation channel to the Atchafalaya River. The findings from this study reveal that in the mainstem Mississippi, the percentage of bed material diversion (83%) is larger than the percentage of flow diversion (76%); Conversely, the diversion channel receives a disproportionate amount of flow (24%) relative to bed material supply (17%). Consequently, severe bed scouring occurred in the controlled Outflow Channel to the Atchafalaya River, while riverbed aggradation progressed in the mainstem Mississippi downstream of the diversion structures, implying reduced flow capacity and potential risk of a high backwater during megafloods. The study demonstrates that Yang's sediment transport equation provides plausible results of bed material fluxes for a highly complicated large river diversion, and that integration of the sediment transport equation with observed morphological changes in riverbed is a valuable approach to investigate sediment dynamics at controlled river bifurcations. 相似文献
800.
Sushindra Kumar Gupta Pushpendra K. Singh Jaivir Tyagi Gunwant Sharma Ajay Singh Jethoo 《水文研究》2020,34(16):3448-3463
This study develops improved Soil Moisture Proxies (SMP) based suspended sediment yield (SMPSY) models corresponding to three antecedent moisture conditions (AMCs) (i.e., AMC-I-AMC-III) by coupling the improved initial abstraction (Ia-λ) model, the SMA procedure and the SMP concept for modelling the rainfall generated suspended sediment yield. The SMPSY models specifically incorporate a watershed storage index (S) model to accentuate the transformation from storm to storm and to avoid the sudden jumps in sediment yield computation. The workability of the SMPSY models is tested using a large dataset of rainfall and sediment yield (98 storm events) from twelve small watersheds and a comparison has been made with the existing MSY model. The goodness-of-fit (GOF) statistics is evaluated in terms of the Nash Sutcliffe efficiency (NSE), and error indices, i.e., root mean square error (RMSE), normalized root mean square error (nRMSE), standard error (SE), mean absolute error (MAE), and RMSE-observations standard deviation ratio (RSR). The NSE values vary from 74.31% to 96.57% and from 75.21% to 91.78%, respectively for the SPMSY and MSY model. The NSE statistics indicate that the SMPSY model has lower uncertainty in simulating sediment yield as compared to the MSY model. The error indices are lower for the SMPSY model than the MSY model for most of the watersheds. These results show that the SMPSY model has less uncertainty and performs better than the MSY model. A sensitivity analysis of the SMPSY model shows that the parameter β is most sensitive followed by parameter S, α and A. Overall, the results show that the characterization of soil moisture variability in terms of SMPs and incorporation of improved delivery ratio and runoff coefficient relationship improves the simulation of the erosion and sediment yield generation process. 相似文献