首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8352篇
  免费   1905篇
  国内免费   2175篇
测绘学   231篇
大气科学   319篇
地球物理   2409篇
地质学   6783篇
海洋学   1228篇
天文学   34篇
综合类   531篇
自然地理   897篇
  2024年   68篇
  2023年   195篇
  2022年   281篇
  2021年   360篇
  2020年   367篇
  2019年   375篇
  2018年   339篇
  2017年   365篇
  2016年   420篇
  2015年   398篇
  2014年   525篇
  2013年   562篇
  2012年   505篇
  2011年   517篇
  2010年   460篇
  2009年   536篇
  2008年   558篇
  2007年   575篇
  2006年   515篇
  2005年   475篇
  2004年   466篇
  2003年   398篇
  2002年   380篇
  2001年   328篇
  2000年   310篇
  1999年   289篇
  1998年   267篇
  1997年   237篇
  1996年   232篇
  1995年   216篇
  1994年   192篇
  1993年   168篇
  1992年   126篇
  1991年   101篇
  1990年   80篇
  1989年   79篇
  1988年   52篇
  1987年   45篇
  1986年   21篇
  1985年   11篇
  1984年   12篇
  1983年   7篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   6篇
  1978年   1篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The European Regional Seas Ecosystem Model (ERSEM) has been coupled with a two-dimensional depth-averaged transport model of the Humber plume region and run to simulate 1988–1989. Simulations of the spatial and temporal variations in chlorophyll-a, nitrate, phosphate and suspended particulate matter distributions in winter, spring and summer show how the development of the spring bloom and subsequent maintenance of primary production is controlled by the physicochemical environment of the plume zone. Results are also shown for two stations, one characterised by the high nutrient and suspended matter concentrations of the plume and the other by the relatively low nutrient and sediment concentrations of the offshore waters. The modelled net primary production at the plume site was 105 g C m−2 a−1 and 127 g C m−2 a−1 offshore. Primary production was controlled by light limitation between October and March and by the availability of nutrients during the rest of the year. The phytoplankton nutrient demand is met by in-situ recycling processes during the summer. The likely effect of increasing and decreasing anthropogenic riverine inputs of nitrate and phosphate upon ecosystem function was also investigated. Modelling experiments indicate that increasing the nitrogen to silicate ratio in freshwater inputs increased the production of non-siliceous phytoplankton in the plume. The results of this model have been used to calculate the annual and quarterly mass balances describing the usage of inorganic nitrogen, phosphate and silicate within the plume zone for the period of the NERC North Sea survey (September 1988 to October 1989). The modelled Humber plume retains 3.9% of the freshwater dissolved inorganic nitrogen, 2.2% of the freshwater phosphate and 1.3% of the freshwater silicate input over the simulated seasonal cycle. The remainder is transported into the southern North Sea in either dissolved or particulate form. The reliability of these results is discussed.  相似文献   
12.
A combination of CTD casts, discrete bottle sampling and in situ voltammetric microelectrode profiling was used to examine changing redox conditions in the water column at a single station south of the Bay Bridge in the upper Chesapeake Bay in late July/early August, 2002–2005. Short-term (2–4 h) fluctuations in the oxic/suboxic/anoxic interface were documented using in situ voltammetric solid-state electrodes. Profiles of dissolved oxygen and sulfide revealed tidally-driven vertical fluctuations of several meters in the depth and thickness of the suboxic zone. Bottom water concentrations of sulfide, Mn2+ and Fe2+ also varied over the tidal cycle by approximately an order of magnitude. These data indicate that redox species concentrations at this site varied more due to physical processes than biogeochemical processes. Based on analysis of ADCP data, tidal currents at this station were strongly polarized, with the principal axis of tidal currents aligned with the mainstem channel. Together with the chemical data, the ADCP analysis suggests tidal flushing of anoxic bottom waters with suboxic water from north of the site. The present study is thus unique because while most previous studies have focused on processes across relatively stable redox interfaces, our data clearly demonstrate the influence of rapidly changing physical mixing processes on water column redox chemistry.Also noted during the study were interannual differences in maximum bottom water concentrations of sulfide, Mn2+ and Fe2+. In 2003, for example, heavy spring rains resulted in severe hypoxia/anoxia in June and early July. While reported storm-induced mixing in late July/early August 2003 partially alleviated the low-oxygen conditions, bottom water concentrations of sulfide, Mn2+ and Fe2+ were still much higher than in the previous year. The latter implies that the response time of the microbial community inhabiting the suboxic/anoxic bottom waters to changing redox conditions is slow compared to the time scale of episodic mixing events. Bottom water concentrations of the redox-sensitive chemical species should thus be useful as a tracer to infer prior hypoxic/anoxic conditions not apparent from ambient oxygen levels at the time of sampling.  相似文献   
13.
We present a linear Boltzmann equation to model wave scattering in the Marginal Ice Zone (the region of ocean which consists of broken ice floes). The equation is derived by two methods, the first based on Meylan et al. [Meylan, M.H., Squire, V.A., Fox, C., 1997. Towards realism in modeling ocean wave behavior in marginal ice zones. J. Geophys. Res. 102 (C10), 22981–22991] and second based on Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136]. This linear Boltzmann equation, we believe, is more suitable than the equation presented in Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136] because of its simpler form, because it is a differential rather than difference equation and because it does not depend on any assumptions about the ice floe geometry. However, the linear Boltzmann equation presented here is equivalent to the equation in Masson and LeBlond [Masson, D., LeBlond, P., 1989. Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 111–136] since it is derived from their equation. Furthermore, the linear Boltzmann equation is also derived independently using the argument in Meylan et al. [Meylan, M.H., Squire, V.A., Fox, C., 1997. Towards realism in modeling ocean wave behavior in marginal ice zones. J. Geophys. Res. 102 (C10), 22981–22991]. We also present details of how the scattering kernel in the linear Boltzmann equation is found from the scattering by an individual ice floe and show how the linear Boltzmann equation can be solved straightforwardly in certain cases.  相似文献   
14.
15.
A model for the depth-limited distribution of the highest wave in a sea state is presented. The distribution for the extreme wave height is based on a probability density function (pdf) for depth-limited wave height distribution for individual waves [Méndez, F.J., Losada, I.J., Medina, R. 2004. Transformation model of wave height distribution. Coastal Eng, Vol. 50, 97:115.] and considers the correlation between consecutive waves. The model is validated using field data showing a good representation of the extreme wave heights in the surf zone. Some important statistical wave heights are parameterized obtaining useful expressions that can be used in further calculations.  相似文献   
16.
本文提出在小偏心受压构件正截面强度计算中,取消弯曲抗压强度fcm(Rw),采用轴心抗压强度fc,这与构件的实际破坏形态相符。对小偏心受压构件正截面强度计算提出了设计建议。特别是对工程上大量应用的矩形截面对称配筋小偏压构件提示了简捷的设计方法,与以往的近似计算方法相比具有物理概念明确,精度高,方法简捷的特点。  相似文献   
17.
以微量元素、稀土元素、Sr和Nd同位素变异特征为依据,确定鲁苏榴辉岩为多成因、多来源和多阶段,指出主要是在印支期扬子陆块与华北陆块碰撞造山作用过程中,挤入的上地幔碎片以及不同原岩类型的壳内高压变质岩碎块。燕山晚期的区域构造热事件使得某些榴辉岩的同位素体系再平衡。  相似文献   
18.
The objective of this study was to examine the redox reactions and other transformations of mercury (Hg) species in surface waters, and the factors determining the rates of these reactions. For the redox studies completed at the Chesapeake Biological Laboratory (CBL), two isotopes (199HgII and 202Hg0) were added into different types of filtered water (fresh to seawater) to examine the oxidation and reduction reactions. Further studies of both the redox reactions and methylation/demethylation reactions of Hg were conducted with unfiltered water on board research vessels during cruises in May and July 2005 on the Chesapeake Bay and shelf. While CH3199HgII was added to allow the examination of demethylation, 201HgII was used to examine both reduction and methylation, and 202Hg0 was used to examine oxidation. Overall, the results showed that both Hg oxidation and reduction were simultaneously occurring and were photochemically mediated in the waters investigated. In contrast to the previously assumed “unreactive” nature of Hg0, the studies found that the magnitude of the rate constant for Hg0 oxidation was greater than that for reduction, indicating its importance in estuarine and coastal waters. In addition, both experiments at CBL and on board ship showed that HgII reduction was similar in magnitude, suggesting that biotic processes were relatively unimportant. While no measurable methylation occurred during the incubation period during the on board studies, concentration of CH3199HgII decreased over the time during the experiments. It appeared that the demethylation processes were not dominantly photochemically driven, but could be microbially mediated. Further studies are needed in order to help better understand Hg redox and transformations in natural water systems.  相似文献   
19.
大亚湾微表层和次表层海水营养盐的研究   总被引:11,自引:0,他引:11  
根据1998年秋季(10、11月)、1999年春、秋季(4、5、10月)5个航次对大亚湾海区微、次表层的调查结果,分析了微表层海水对氮、磷、硅营养盐的富集概况,讨论了营养盐与环境因子的关系。结果表明:大亚湾海区微表层海水对氮、磷、硅营养盐均有富集作用,因海况及季节不同,富集因数(EF)与其他海区的有所差别;无论夏季或秋季,大亚湾海区微表层海水中无机氮都以NH4-N为主要存在形态;其余水层则以NO3-N为主要存在形态。结果还表明,微表层、次表层海水中NH4-N与BOD5、COD测值都呈高度显著正相关,与PO4-P和SiO3-Si含量均无相关,说明大亚湾海区水中含氮有机物较含磷有机物丰富。  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号