首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11446篇
  免费   3211篇
  国内免费   2028篇
测绘学   571篇
大气科学   1339篇
地球物理   5097篇
地质学   4094篇
海洋学   3457篇
天文学   370篇
综合类   555篇
自然地理   1202篇
  2024年   34篇
  2023年   102篇
  2022年   256篇
  2021年   382篇
  2020年   413篇
  2019年   652篇
  2018年   765篇
  2017年   793篇
  2016年   813篇
  2015年   829篇
  2014年   864篇
  2013年   1226篇
  2012年   867篇
  2011年   853篇
  2010年   684篇
  2009年   701篇
  2008年   722篇
  2007年   684篇
  2006年   654篇
  2005年   624篇
  2004年   520篇
  2003年   489篇
  2002年   441篇
  2001年   389篇
  2000年   384篇
  1999年   264篇
  1998年   214篇
  1997年   191篇
  1996年   147篇
  1995年   141篇
  1994年   142篇
  1993年   122篇
  1992年   82篇
  1991年   55篇
  1990年   44篇
  1989年   25篇
  1988年   36篇
  1987年   14篇
  1986年   4篇
  1985年   17篇
  1984年   11篇
  1983年   9篇
  1982年   10篇
  1981年   8篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
981.
A deep seismic‐reflection transect in western Victoria was designed to provide insights into the structural relationship between the Lachlan and the Delamerian Orogens. Three seismic lines were acquired to provide images of the subsurface from west of the Grampians Range to east of the Stawell‐Ararat Fault Zone. The boundary between the Delamerian and Lachlan Orogens is now generally considered to be the Moyston Fault. In the vicinity of the seismic survey, this fault is intruded by a near‐surface granite, but at depth the fault dips to the east, confirming recent field mapping. East of the Moyston Fault, the uppermost crust is very weakly reflective, consisting of short, non‐continuous, west‐dipping reflections. These weak reflections represent rocks of the Lachlan Orogen and are typical of the reflective character seen on other seismic images from elsewhere in the Lachlan Orogen. Within the Lachlan Orogen, the Pleasant Creek Fault is also east dipping and approximately parallel to the Moyston Fault in the plane of the seismic section. Rocks of the Delamerian Orogen in the vicinity of the seismic line occur below surficial cover to the west of the Moyston Fault. Generally, the upper crust is only weakly reflective, but subhorizontal reflections at shallow depths (up to 3 km) represent the Grampians Group. The Escondida Fault appears to stop below the Grampians Group, and has an apparent gentle dip to the east. Farther east, the Golton and Mehuse Faults are also east dipping. The middle to lower crust below the Delamerian Orogen is strongly reflective, with several major antiformal structures in the middle crust. The Moho is a slightly undulating horizon at the base of the highly reflective middle to lower crust at 11–12 s TWT (approximately 35 km depth). Tectonically, the western margin of the Lachlan Orogen has been thrust over the Delamerian Orogen for a distance of at least 25 km, and possibly over 40 km.  相似文献   
982.
During several triaxial compression experiments on plastic hardening, softening, and failure properties of dense sand specimens, it was found on various stress paths that the size of the failure surface was not constant. Instead, it changed depending on the current state of hydrostatic pressure. This finding is in contrast to the standard opinion consisting of the fact that the failure surface remains constant, once it has been reached during an experiment or in situ. In general, the behaviour of cohesionless granular‐material‐like sand is somehow characterised in between fluid and solid, where the solid behaviour results from the angle of internal friction and the confining pressure. Although the friction angle is an intrinsic material property, the confining pressure varies with the boundary conditions, thus defining different solid properties like plastic hardening, softening, and also failure. Based on our findings, it was the goal of the present contribution to introduce an improved setting for the plastic strain hardening and softening behaviour including the newly found yield properties at the limit state. For the identification of the material parameters, a complete triaxial experimental analysis of the tested sand is given. The overall elasto‐plasticity concept is validated by numerical computations of several laboratory foundation‐ and slope‐failure experiments. The performance of the proposed approach is compared with the standard concept of a constant failure surface, where the corresponding yield surfaces are understood as contours of equivalent plastic work or plastic strain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
983.
In debris‐flow‐prone channels, normal fluvial sediment transport occurs (nearly exclusively in suspended mode) between episodic debris‐flow events. Observations of suspended sediment transport through a winter season in a steepland gully in logged terrain revealed two event types. When flows exceeded a threshold of 270 l s−1, events yielded significant quantities of sediment and suspended sediment concentration increased with flow. Smaller events were strongly ‘supply limited’; sediment concentration decreased as flow increased. Overall, there is no consistent correlation between runoff and sediment yield. Within the season, three subseasons were identified (demarcated by periods of freezing weather) within which a pattern of fine sediment replenishment and evacuation occurred. Finally, a signature of fine sediment mobilization and exhaustion was observed within individual events. Fine sediment transport occurred in discrete pulses within storm periods, most of the yield occurring within 5 to 15% of storm runoff duration, so that it is unlikely that scheduled sampling programs would identify significant transport. Significant events are, however, generally forecastable on the basis of regional heavy rainfall warnings, providing a basis for targeted observations. Radiative snowmelt events and rain‐on‐snow remain difficult to forecast, since the projection of temperatures from the nearest regular weather station yields variable results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
984.
Abstract

Abstract MODerate-resolution Imaging Spectroradiometer (MODIS) is a new generation remote sensing (RS) sensor and its applications in hydrology and water resources have attracted much attention. To overcome the problems of slow response in flood disaster monitoring based on traditional RS techniques in China, the Flood Disaster Monitoring and Assessing System (FDMAS), based on MODIS and a Geographic Information System (GIS), was designed and applied to Dongting Lake, Hunan Province, China. The storage curve of Dongting Lake for 1995 was obtained using 1:10 000 topographic map data and then a relationship between water level at the Chenglingji hydrological station and lake area was derived. A new relationship between water level and lake area was obtained by processing MODIS images of Dongting Lake from April 2002 to April 2003 and the influence of lake area variation on water level was analysed with the 1996 flood data. It was found that the water level reduction reached 0.64 m for the 1996 flood if the original lake area curve was replaced with the area curve of 2002. This illustrates that the flood water level has been considerably reduced as a result of the increased area of Dongting Lake since the Chinese Central Government’s ?return land to lake? policy took effect in 1998.  相似文献   
985.
Contacts between Archaean granites and greenstones in the northeastern part of the Pilbara Craton have been described as intrusive and tectonic. New field observations in the Shay Gap region demonstrate that greenstones of the Gorge Creek Group unconformably overlie the Muccan and Warrawagine batholiths. Regionally, the unconformity is marked by a persistent but relatively thin basal clastic sequence, locally with a granite boulder conglomerate, overlain by ore‐bearing banded iron‐formation, fine‐grained clastic rocks and chert. The granite basement is dated at 3443 ± 6 Ma. The precise age of the hiatus is unknown but its maximum effect might have been the removal of a substantial thickness of Early to Middle Archaean strata.  相似文献   
986.
The uses and shortcomings of duricrusts (ferricrete, calcrete and silcrete) in engineering construction (as used for road‐base, aggregate, foundation materials and aquifers) are reviewed. Australian production of these materials represents about one‐third of all unprocessed road‐base and they are especially important as pavement courses for lightly trafficked, low‐cost rural and outback roads. However, duricrusts are regarded as marginal materials at best because of their typically poor grading, particle unsoundness, high fines plasticity, and absorption of water and bitumen. These materials are used because they are available locally in areas that are otherwise lacking in hard rock materials, such as deeply weathered and sedimentary rock terrains. The weathering profiles of which they form part are characterized by high permeability (despite being clay‐rich), variable cementation, low compressibility and a tendency to become weaker with depth. Although the more indurated layers are unrippable, they are also difficult to blast. Pedogenic (nodular) duricrusts were formerly sought for natural road‐base, because they occur widely and require only rudimentary processing. However, well‐cemented groundwater (vadose) duricrusts are now the preferred deposits, even though they require crushing and screening. Ferricrete is the most widely exploited of the duricrusts for engineering purposes, especially in northern and southwestern Australia, although calcrete is important in South Australia and in the Murray Basin. Silcrete is only a minor source of aggregate and road‐base, mainly in western Queensland.  相似文献   
987.
988.
Songhao Shang 《水文研究》2012,26(22):3338-3343
Calculation of actual crop evapotranspiration under soil water stress conditions is crucial for hydrological modeling and irrigation water management. Results of actual evapotranspiration depend on the estimation of water stress coefficient from soil water storage in the root zone, which varies with numerical methods and time step used. During soil water depletion periods without irrigation or precipitation, the actual crop evapotranspiration can be calculated by an analytical method and various numerical methods. We compared the results from several commonly used numerical methods, including the explicit, implicit and modified Euler methods, the midpoint method, and the Heun's third‐order method, with results of the analytical method as the bench mark. Results indicate that relative errors of actual crop evapotranspiration calculated with numerical methods in one time step are independent of the initial soil water storage in the range of soil water stress. Absolute values of relative error decrease with the order of numerical methods. They also decrease with the number of time step, which can ensure the numerical stability of successive simulation of soil water balance. Considering the calculation complexity and calculation errors caused by numerical approximation for different time step and maximum crop evapotranspiration, the explicit Euler method is recommended for the time step of 1 day (d) or 2 d for maximum crop evapotranspiration less than 5 mm/d, the midpoint method or the modified Euler method for the time step of up to one week or 10 d for maximum crop evapotranspiration less than 5 mm/d, and the Heun's third‐order method for the time step of up to 15 d. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
989.
This study addresses the influence of landslide dams on surface water drainage and groundwater flow. In the study area of Scanno Lake and Sagittario River (Central Italy), a limestone rockslide‐avalanche formed a lake, which has an outlet that is occasionally active, showing infiltration into the rockslide dam. Several springs are present at the lake's base and are partly fed by seepage through the rockslide debris. Piezometric surveys, discharge measurements, pumping tests and chemical analyses are tools used to build a conceptual model of the groundwater flow and to evaluate the flow through the rockslide debris. Seasonal water isotopic signatures validate the assumed model, showing a mixing of infiltration recharge and groundwater seepage throughout the rockslide debris. Various recharge areas have been found for springs, pointing out those directly fed by the rockslide debris aquifer. Hypotheses about seasonal groundwater mixing between the regional carbonate aquifer and the rockslide debris aquifer are supported by isotope results. Seasonal changes in groundwater table level due to recharge and surface losses from seasonal outlet have been correlated with isotopic groundwater composition from the rockslide debris aquifer and the downstream springs; this relationship highlights the role of the rockslide dam body on the hydrodynamics of the studied area. Relationships between surface waters and groundwater in the area have been completely understood on the basis of water isotopic fingerprinting, finally obtaining a complete evaluation of groundwater renewable resources and its regimen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
990.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号