首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3447篇
  免费   399篇
  国内免费   156篇
测绘学   125篇
大气科学   210篇
地球物理   1588篇
地质学   1136篇
海洋学   338篇
天文学   29篇
综合类   25篇
自然地理   551篇
  2024年   18篇
  2023年   26篇
  2022年   30篇
  2021年   78篇
  2020年   153篇
  2019年   119篇
  2018年   113篇
  2017年   165篇
  2016年   158篇
  2015年   123篇
  2014年   142篇
  2013年   359篇
  2012年   75篇
  2011年   105篇
  2010年   101篇
  2009年   163篇
  2008年   234篇
  2007年   205篇
  2006年   201篇
  2005年   184篇
  2004年   149篇
  2003年   118篇
  2002年   101篇
  2001年   89篇
  2000年   108篇
  1999年   101篇
  1998年   96篇
  1997年   93篇
  1996年   69篇
  1995年   66篇
  1994年   52篇
  1993年   54篇
  1992年   32篇
  1991年   24篇
  1990年   22篇
  1989年   21篇
  1988年   21篇
  1987年   7篇
  1986年   11篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1954年   2篇
排序方式: 共有4002条查询结果,搜索用时 15 毫秒
101.
1.IntroductionStatisticalstudiesdemonstratedthatinEINinoyearstheprecipitationinsummerintheChangjiangRiverandHuaiheRiverBasinsisprobablyabovethenormalwhileitispossiblybelowthenormalinthenorthernChinaandtheHetao(theGreatBendoftheHuangheRiver)region.ThetemperatureinsummerisusuallylowerthannormalinEastAsia,especiallyinNortheastChina.Therewere6yearswithseverelowtemperaturesince1951,andtheyare1954,1957,1964,1972,1976and1983,whichareallrelatedtotheEINinoyears(seeHuangetal.,1989,1992;Xiangand…  相似文献   
102.
Inverse-dispersion calculations can be used to infer atmospheric emission rates through a combination of downwind gas concentrations and dispersion model predictions. With multiple concentration sensors downwind of a compound source (whose component positions are known) it is possible to calculate the component emissions. With this in mind, a field experiment was conducted to examine the feasibility of such multi-source inferences, using four synthetic area sources and eight concentration sensors arranged in different configurations. Multi-source problems tend to be mathematically ill-conditioned, as expressed by the condition number κ. In our most successful configuration (average κ = 4.2) the total emissions from all sources were deduced to within 10% on average, while component emissions were deduced to within 50%. In our least successful configuration (average κ = 91) the total emissions were calculated to within only 50%, and component calculations were highly inaccurate. Our study indicates that the most accurate multi-source inferences will occur if each sensor is influenced by only a single source. A “progressive” layout is the next best: one sensor is positioned to “see” only one source, the next sensor is placed to see the first source and another, a third sensor is placed to see the previous two plus a third, and so on. When it is not possible to isolate any sources κ is large and the accuracy of a multi-source inference is doubtful.  相似文献   
103.
以周晓平研制的有限区域细网格数值模式为基础,编制成一个套网格模式,并对1991年7月2~3日发生在江淮流域的特大暴雨过程,进行了数值模拟和动力分析。结果表明:低空急流加强,输送了大量暖湿空气并激发强烈的上升运动是造成该区暴雨的主要原因;在该过程中,热成风平衡遭到破坏,其非热成风平衡部分伴随相应的二级环流,也有利于垂直运动的产生。  相似文献   
104.

各向异性是地电异常解释中不可忽视的因素,广泛存在于裂隙或层理发育的地质环境中.本文针对任意各向异性条件下直流电阻率法三维正演问题进行研究,结合非结构谱元法建立模拟算法,充分利用谱方法的指数收敛性以及非结构有限元对地形和复杂异常体刻画能力,提高计算精度和效率.通过灵活的四面体网格剖分和高阶谱插值,实现了复杂介质任意各向异性模型电阻率响应的高精度数值模拟.我们首先通过层状各向异性模型验证本文非结构谱元法的计算精度,进而我们以半空间中立方体模型为例分析各向异性对电阻率响应的影响特征,并通过计算针对不同各向异性参数的视电阻率极性图,探究地下介质各向异性特征识别方法.最后,我们针对典型的山脊模型计算和分析存在地形效应条件下各向异性电流场分布及视电阻率特征.模型计算结果表明基于四面体网格的谱元法模拟带有复杂地形和异常体的任意各向异性模型具有很高的计算精度.本文的研究成果将在推进电阻率方法用于解决裂隙及层理等环境和工程地质问题中发挥积极作用.

  相似文献   
105.
三峡库区巫山新城超高加筋挡墙变形破坏及修复研究   总被引:3,自引:1,他引:2  
结合三峡库区弃渣灾害的防治和回填增地,以巫山新城加筋土挡墙等实际工程为典型进行剖析,对加筋土挡墙,特别是超高加筋土挡墙变形破坏机制和过程进行了系统深入的研究。从加筋土挡墙填土物理力学性质室内试验研究入手,采用FLAC等数值计算方法,系统地研究了加筋土挡墙的应力状况和变形破坏特性。将离心模拟技术应用于超高多级加筋土挡墙(H=57m)的研究中,进行了三级加筋土挡墙的离心模型试验,对加筋土挡墙墙背土压力分布规律、挡墙面板和填土的沉降情况以及拉筋的拉力分布规律进行了详细而系统的研究。特别是精心设计出离心模型试验中三级挡墙的面板与拉筋的联结,较真实地反映了实际工程中加筋土挡墙整体复合结构的力学特性。根据研究结果,提出了巫山新城加筋土挡墙修复加固方案,编制了设计报告,并加以实施。目前,修复加固工程效果良好。 对库区,乃至全国超高加筋土挡墙的建设均有指导和示范作用。  相似文献   
106.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
107.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
108.
The aim of this study was to investigate rainfall–groundwater dynamics over space and annual time scales in a hard‐rock aquifer system of India by employing time series, geographic information system and geostatistical modelling techniques. Trends in 43‐year (1965–2007) annual rainfall time series of ten rainfall stations and 16‐year (1991–2006) pre‐monsoon and post‐monsoon groundwater levels of 140 sites were identified by using Mann–Kendall, Spearman rank order correlation and Kendall rank correlation tests. Trends were quantified by Kendall slope method. Furthermore, the study involves novelty of examining homogeneity of pre‐monsoon and post‐monsoon groundwater levels, for the first time, by applying seven tests. Regression analysis between rainfall and post‐monsoon groundwater levels was performed. The pre‐monsoon and post‐monsoon groundwater levels for four periods – 1991–1994, 1995–1998, 1999–2002 and 2003–2006 – were subjected to geographic information system‐based geostatistical modelling. The rainfall showed considerable spatiotemporal variations, with a declining trend at the Mavli rainfall station (p‐value < 0.05). The Levene's tests revealed spatial homogeneity of rainfall at α = 0.05. Regression analyses indicated significant relationships (r2 > 0.5) between groundwater level and rainfall for eight rainfall stations. Non‐homogeneity and declining trends in the groundwater level, attributed to anthropogenic and hydrologic factors, were found at 5–61 more sites in pre‐monsoon compared with post‐monsoon season. The groundwater declining rates in phyllite–schist, gneiss, schist and granite formations were found to be 0.18, 0.26, 0.21 and 0.14 m year?1 and 0.13, 0.19, 0.16 and 0.02 m year?1 during the pre‐monsoon and post‐monsoon seasons, respectively. The geostatistical analyses for four time periods revealed linkages between the rainfall and groundwater levels. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
109.
The estimation of wave transmission across the fractured rock masses is of great importance for rock engineers to assess the stability of rock slopes in open pit mines. Presence of fault, as a major discontinuity, in the jointed rock mass can significantly impact on the peak particle velocity and transmission of blast waves, particularly where a fault contains a thick infilling with weak mechanical properties. This paper aims to study the effect of fault properties on transmission of blasting waves using the distinct element method. First, a validation study was carried out on the wave transmission across a single joint and different rock mediums through undertaking a comparative study against analytical models. Then, the transmission of blast wave across a fault with thick infilling in the Golgohar iron mine, Iran, was numerically studied, and the results were compared with the field measurements. The blast wave was numerically simulated using a hybrid finite element and finite difference code which then the outcome was used as the input for the distinct element method analysis. The measured uplift of hanging wall, as a result of wave transmission across the fault, in the numerical model agrees well with the recorded field measurement. Finally, the validated numerical model was used to study the effect of fault properties on wave transmission. It was found that the fault inclination angle is the most effective parameter on the peak particle velocity and uplift. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
110.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号