首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   45篇
  国内免费   135篇
测绘学   10篇
地球物理   127篇
地质学   269篇
海洋学   48篇
天文学   25篇
综合类   5篇
自然地理   4篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   4篇
  2020年   10篇
  2019年   15篇
  2018年   22篇
  2017年   18篇
  2016年   17篇
  2015年   14篇
  2014年   20篇
  2013年   30篇
  2012年   17篇
  2011年   22篇
  2010年   17篇
  2009年   32篇
  2008年   26篇
  2007年   28篇
  2006年   33篇
  2005年   27篇
  2004年   18篇
  2003年   20篇
  2002年   12篇
  2001年   13篇
  2000年   6篇
  1999年   12篇
  1998年   8篇
  1997年   7篇
  1996年   11篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1979年   1篇
  1977年   1篇
排序方式: 共有488条查询结果,搜索用时 31 毫秒
131.
深海刚性跨接管是水下生产系统的关键设备,其弯管处易因应力集中导致结构失效。依照理论与规范,并结合工程实例,通过数值模拟分析对影响跨接管弯管强度的关键因素进行研究,并对各影响因素展开敏感性分析。结果表明:跨接管结构形式是影响弯管强度的主要设计因素(M型跨接管可有效降低弯管的结构应力),弯管曲率半径影响较小;管道端部位移是影响弯管强度的主要载荷因素(重点分析此因素在不同方向的敏感性,发现轴向端部位移的影响最大);而工作温度对管道强度的影响很小。  相似文献   
132.
波浪作用下刚性框架浮体及其锚绳运动数值模拟精度分析   总被引:2,自引:1,他引:1  
由小尺度刚性杆件构成的复杂结构近年来多用于海洋平台建设和海洋监测浮标制作以及海洋增养殖人工浮鱼礁的设计。采用有限单元法和集中质量点法建立波浪作用下刚性框架浮体及其锚绳运动数值模型,探讨空间单元划分、时间离散步长、数据保存格式对刚性框架浮体和柔性锚绳运动模拟精度的影响,分别给出此三者之间的匹配关系。研究结果表明:框架浮体的单元划分可依据是否出水给定,单元的划分比建议取0.05;锚绳的单元划分与其上端连接的浮体浮力有关,当锚绳的拉力主要由上端浮体浮力产生时锚绳单元的划分影响较小,当锚绳的拉力主要由波浪力产生时锚绳单元的划分比建议取0.02;空间单元划分与时间离散步长存在匹配关系,通过减小时间步长来追求数值模拟精度时必须同时考虑保存运动物理量截断误差的影响。  相似文献   
133.
钢悬链式立管出平面运动刚体模态试验研究   总被引:1,自引:1,他引:0  
付雪鹏  黄维平 《海洋工程》2018,36(5):114-120
钢悬链式立管为深海浮式生产系统油气输送的首选立管。基于钢悬链式立管刚体摆动模型,通过理论分析和模型试验,研究了钢悬链式立管出平面运动的动力学特性,验证了作者此前提出的钢悬链式立管出平面运动的刚体模态特征。研究表明,在海洋环境荷载作用下,波浪力和涡激升力引起的悬链式立管振动不仅有弯曲变形模态,也存在刚体摆动模态。对于钢悬链式立管,刚体摆动将使触地区产生附加弯矩,从而增大了应力、加速了疲劳损伤。  相似文献   
134.
大多数建筑结构由梁、柱、支撑、剪力墙、地基和楼板等主要结构组成。一般而言,楼板对建筑结构的抗震性能可以忽略不计,所以进行建筑结构分析的模型是无楼板的。因此,楼板被刚性隔板代替,以提高分析效率。本文提出的建筑结构抗震分析解析模型考虑了楼板抗弯刚度,该模型采用超级单元、刚性隔板和子结构技术来减少自由度。通过实例分析,验证了该模型在多层建筑结构抗震分析中的有效性和准确性。且此模型能够显著减少计算量,提高分析效率,振动周期和响应时间等分析结果的精度与精化模型的结果非常接近,说明该模型的提出是合理的。  相似文献   
135.
The paper presents a lumped parameter model for the approximation of the frequency‐dependent dynamic stiffness of pile group foundations. The model can be implemented in commercial software to perform linear or nonlinear dynamic analyses of structures founded on piles taking into account the frequency‐dependent coupled roto‐translational, vertical, and torsional behaviour of the soil‐foundation system. Closed‐form formulas for estimating parameters of the model are proposed with reference to pile groups embedded in homogeneous soil deposits. These are calibrated with a nonlinear least square procedure, based on data provided by an extensive non‐dimensional parametric analysis performed with a model previously developed by the authors. Pile groups with square layout and different number of piles embedded in soft and stiff soils are considered. Formulas are overall well capable to reproduce parameters of the proposed lumped system that can be straightforwardly incorporated into inertial structural analyses to account for the dynamic behaviour of the soil‐foundation system. Some applications on typical bridge piers are finally presented to show examples of practical use of the proposed model. Results demonstrate the capability of the proposed lumped system as well as the formulas efficiency in approximating impedances of pile groups and the relevant effect on the response of the superstructure.  相似文献   
136.
The effects of soil‐structure interaction (SSI) are often studied using two‐dimensional (2D) or axisymmetric three‐dimensional (3D) models to avoid the high cost of the more realistic, fully 3D models, which require 2 to 3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed using impedances for linear in‐plane 2D models with rectangular foundations, embedded in uniform or layered half‐space. They are computed by comparison with results for 3D rectangular foundations with the same vertical cross‐section and different aspect ratios. The structure is represented by a single degree‐of‐freedom oscillator. Correction factors are presented for a range of the model parameters. The results show that in‐plane 2D approximations overestimate the SSI effects, exaggerating the frequency shift, the radiation damping, and the reduction of the peak amplitude. The errors are larger for stiffer, taller, and heavier structures, deeper foundations, and deeper soil layer. For example, for a stiff structure like Millikan library (NS response; length‐to‐width ratio ≈ 1), the error is 6.5% in system frequency, 44% in system damping, and 140% in peak amplitude. The antiplane 2D approximation has an opposite effect on system frequency and the same effect on system damping and peak relative response. Linear response analysis of a case study shows that the NEHRP‐2015 provisions for reduction of base shear force due to SSI may be unsafe for some structures. The presented correction factor diagrams can be used in practical design and other applications.  相似文献   
137.
This paper investigates the usefulness of a semiactive control to reduce the overturning vulnerability of a rigid block on a rigid plane under earthquake excitation. The proposed feedback law is used to set the stiffness of restraints placed at the 2 lower corners of the block. The performance of the semiactive control is numerically validated by subjecting the block to 100 recorded accelerograms. Specific simulations are performed to study the effect of different anchorage design parameters on the utility of the control. Finally, the robustness of the proposed control is addressed with respect to typical issues of the real‐world implementation.  相似文献   
138.
Seismic shocks occur sometimes as a sequence, close in space and time, of destructive events of comparable intensity. In these cases, a significant portion of the damage to historical buildings can be related with the cumulated damage on structures that become progressively more vulnerable. This research investigates the specific increase of damage determined by a sequence of strong ground motions, focusing the interest on the out‐of‐plane response of 2 church masonry façades. The dynamic analyses were performed by a specific rigid body and spring model RBSM, which only accounts for out‐of‐plane damage mechanisms. Two idealized models of façade, each made of 2 different masonry bonds, have been studied by applying various sequences of recorded accelerograms. The results highlighted a complex relationship between the spectral content of the seismic shocks and the characteristics of the structures that change in the course of the loading sequence due to the development of damage. The Housner spectral intensity proved to be a reliable scalar measure of the ground motion destructiveness for these façades. Moreover, when considering a design‐consistent accelerogram that causes a relevant damage pattern, ie, with a significant elongation of the effective first period of vibration, the numerical results indicated a possible spectral intensity threshold below which the occurrence of repeated seismic shocks, both before and after the reference design shock, can be considered as irrelevant. On the other hand, a catastrophic increase of damage should be expected when this threshold is overcome.  相似文献   
139.
This paper aims at clarifying the role of dynamic soil–structure interaction in the seismic assessment of structure and foundation, when the non‐linear coupling of both subsystems is accounted for. For this purpose, the seismic assessment of an ideal set of bridge piers on shallow foundations is considered. After an initial standard assessment, based on capacity design principles, the evaluation of the seismic response of the piers is carried out by dynamic simulations, where both the non‐linear responses of the superstructure and of the foundation are accounted for, in the latter case through the macro‐element modeling of the soil–foundation system. The results of the dynamic simulations point out the beneficial effects of the non‐linear response of the foundation, which provides a substantial contribution to the overall energy dissipation during seismic excitation, thus allowing the structural ductility demand to decrease significantly with respect to a standard fixed‐base or linear‐elastic base assessment. Permanent deformations at the foundation level, such as rotation and settlement, turn out to be of limited amount. Therefore, an advanced assessment approach of the integrated non‐linear system, consisting of the interacting foundation and superstructure, is expected to provide more rationale and economic results than the standard uncoupled approach, which, neglecting any energy dissipation at the foundation level, generally overestimates the ductility demand on the superstructure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
140.
Although the seismic actions generally consist of a combination of waves, which propagates with an angle of incidence not necessarily vertical, the common practice when analyzing the dynamic behavior of pile groups is based on the assumption of vertically incident wave fields. The aim of this paper is to analyze how the angle of incidence of SV waves affects the dynamic response of pile foundations and piled structures. A three-dimensional boundary element-finite element coupling formulation is used to compute impedances and kinematic interaction factors corresponding to several configurations of vertical pile groups embedded in an isotropic homogeneous linear viscoelastic half-space. These results, which are provided in ready-to-use dimensionless graphs, are used to determine the effective dynamic properties of an equivalent single-degree-of-freedom oscillator that reproduces, within the range where the peak response occurs, the response of slender and nonslender superstructures through a procedure based on a substructuring model. Results are expressed in terms of effective flexible-base period and damping as well as maximum shear force at the base of the structure. The relevance and main trends observed in the influence of the wavefront angle of incidence on the dynamic behavior of the superstructure are inferred from the presented results. It is found that effective damping is significantly affected by the variations of the wave angle of incidence. Furthermore, it comes out that the vertical incidence is not always the worst-case scenario.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号