首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   45篇
  国内免费   135篇
测绘学   10篇
地球物理   127篇
地质学   269篇
海洋学   48篇
天文学   25篇
综合类   5篇
自然地理   4篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   4篇
  2020年   10篇
  2019年   15篇
  2018年   22篇
  2017年   18篇
  2016年   17篇
  2015年   14篇
  2014年   20篇
  2013年   30篇
  2012年   17篇
  2011年   22篇
  2010年   17篇
  2009年   32篇
  2008年   26篇
  2007年   28篇
  2006年   33篇
  2005年   27篇
  2004年   18篇
  2003年   20篇
  2002年   12篇
  2001年   13篇
  2000年   6篇
  1999年   12篇
  1998年   8篇
  1997年   7篇
  1996年   11篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1979年   1篇
  1977年   1篇
排序方式: 共有488条查询结果,搜索用时 15 毫秒
11.
郑会俊 《江苏地质》2003,27(3):179-181
介绍了高压旋喷法在镇江市南徐路软土路基处理中的应用,提出了旋喷桩的施工工艺、质量控制要点,对应用效果作了简要评述。  相似文献   
12.
Motivated by the development of performance‐based design guidelines with emphasis on both structural and non‐structural systems, this paper focuses on seismic vulnerability assessment of block‐type unrestrained non‐structural components under sliding response on the basis of seismic inputs specified by current seismic codes. Two sliding‐related failure modes are considered: excessive relative displacement and excessive absolute acceleration. It is shown that an upper bound for the absolute acceleration response can be assessed deterministically, for which a simple yet completely general equation is proposed. In contrast, fragility curves are proposed as an appropriate tool to evaluate the excessive relative displacement failure mode. Sample fragility curves developed through Monte‐Carlo simulations show that fragility estimates obtained without taking into account vertical base accelerations can be significantly unconservative, especially for relatively large values of the coefficient of friction. It is also found that reasonable estimates of relative displacement response at stories other than the ground in multistorey buildings cannot in general be obtained by simply scaling the ground acceleration to the peak acceleration at the corresponding storey. Failure modes considered in this study are found to be essentially independent of each other, a property that greatly simplifies assessment of conditional limit states. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
13.
水流冲击管道内滞留气团的刚性数学模型   总被引:3,自引:0,他引:3       下载免费PDF全文
通过数学分析证明,在不计局部水头损失时,目前常用的几种简化刚性数学模型的最大气压计算结果相等,并与管道内初始充水段长度无关。但算例表明,对于初始充水段较短或滞留气团体积很小情况,这些简化模型的计算误差将达到不容忽视的程度,甚至导出错误结论。笔者导出的完整刚性数学模型,弥补了简化模型的不足,同时指出了刚性模型的理论缺陷和适用条件。  相似文献   
14.
This paper advocates the use of a multiphase model, already developed for static or quasi‐static geotechnical engineering problems, for simulating the behaviour of piled raft foundations subject to horizontal as well as rocking dynamic solicitations. It is shown that such a model, implemented in a FEM code, yields appropriate predictions for the foundation impedance characteristics, provided that shear and bending effects in the piles are taken into account, thus corroborating the findings of the asymptotic homogenization theory. Besides, it is notably pointed out that such a multiphase‐based computational tool makes it possible to assess the dynamic behaviour of pile groups in a much quicker way than when using direct numerical simulations, which may face oversized problems when large pile groups are concerned. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
15.
Attenuations of solitary wave over a patch of submerged canopy are experimentally investigated. The submerged canopy is modeled by a group of circular cylinder array. The decay coefficients of different wave heights in two water depths along the wave flume are measured for six canopy models, including two canopy heights and three styles of arrangements. The relationships among the decay coefficient, and the dimensionless wave height, submergence ratio, relative height and arrangement of the canopy are experimentally studied. 2D PIV technique is employed to measure the representative flow field inside the canopy. A four-deck flow structure is proposed for wave flow field over shallow submerged canopy. The characteristics of shear flow inside the aligned canopy region are discussed.  相似文献   
16.
This paper uses Biot's poroelasticity approach to examine the consolidation behaviour of a rigid foundation with a frictionless base in contact with a poroelastic halfspace. The mathematical development of the mixed boundary value problem involves a set of dual integral equations in the Laplace transform domain which cannot be conveniently solved by employing conventional procedures. In this paper, a numerical solution is developed using a scheme where the contact normal stress is approximated by a discretized equivalent. The influence of limiting drainage boundary conditions at the entire surface of the halfspace on the degree of consolidation of the rigid circular foundation is investigated. The results obtained in this study are compared with the corresponding results given in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
17.
In the practice of geotechnical engineering, the case of a ring footing carrying a set of concentrated point loads is a common problem. At times, the induced vertical and angular displacements for the ring footing need to be evaluated at a relatively precise level. By making use of the governing set of equations derived for the case of a general curved beam, expressions that can be easily implemented in modern computing software are derived for the vertical and angular displacements of a ring footing of rectangular cross section as functions of the radial position. The loading case considered is a vertical point load, and the soil is modelled as elastic. Estimates of the displacements have been shown for a common range of practical applications. The behaviour for a set of concentrated loads may be evaluated using the derived equations through direct superposition. Nonlinear finite element analysis is used to evaluate the vertical deflection and angular twist of the ring foundation. Numerical analysis performed for three ring foundations with different radii and cross sections is reported to validate the accuracy of the derived analytical solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
18.
By using the upper bound finite‐elements limit analysis, with an inclusion of single and two horizontal layers of reinforcements, the ultimate bearing capacity has been computed for a rigid strip footing placed over (i) fully granular, (ii) cohesive‐frictional, and (iii) fully cohesive soils. It is assumed that (i) the reinforcements are structurally strong so that no axial tension failure can occur, (ii) the reinforcement sheets have negligible resistance to bending, and (iii) the shear failure can take place between the reinforcement and soil mass. It is expected that the different approximations on which the analysis has been based would generally remain applicable for reinforcements in the form of geogrid sheets. A method has been proposed to incorporate the effect of the reinforcement in the analysis. The efficiency factors, ηc and ηγ, to be multiplied with Nc and Nγ , for finding the bearing capacity of reinforced foundations, have been established. The results have been obtained (i) for different values of ? in case of fully granular and cohesive‐frictional soils, and (ii) for different rates at which the cohesion increases with depth for a fully cohesive soil. The optimum positions of the reinforcements' layers have also been determined. The effect of the reinforcements' length on the results has also been analyzed. As compared to cohesive soils, the granular soils, especially with higher values of ?, cause a much greater increase in the bearing capacity. The results compare reasonably well with the available theoretical and experimental data from literature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
19.
This article presents a method for the nonlinear analysis of laterally loaded rigid piles in cohesive soil. The method considers the force and the moment equilibrium to derive the system equations for a rigid pile under a lateral eccentric load. The system equations are then solved using an iteration scheme to obtain the response of the pile. The method considers the nonlinear variation of the ultimate lateral soil resistance with depth and uses a new closed‐form expression proposed in this article to determine the lateral bearing factor. The method also considers the horizontal shear resistance at the pile base, and a bilinear relationship between the shear resistance and the displacement is used. For simplicity, the modulus of horizontal subgrade reaction is assumed to be constant with depth, which is applicable to piles in overconsolidated clay. The nonlinearity of the modulus of horizontal subgrade reaction with pile displacement at ground surface is also considered. The validity of the developed method is demonstrated by comparing its results with those of 3D finite element analysis. The applications of the developed method to analyze five field test piles also show good agreement between the predictions and the experimental results. The developed method offers an alternative approach for simple and effective analysis of laterally loaded rigid piles in cohesive soil. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
20.
This paper presents results of meticulous laboratory testing and numerical simulations on the effect of reinforcement on the low-strain stiffness and bearing capacity of shallow foundations on dry sand. The effect of the location and the number of reinforcement layers is studied in the laboratory, whereas numerical simulations are used to study the reinforcement-foundation interaction. Laboratory tests show an increase of 100, 200, and 275% not only in bearing capacity but also in low-strain stiffness (linear load–displacement behaviour) of a square foundation when one, two, and three layers of reinforcement are used, respectively. The specimen preparation technique is found to be crucial for the repeatability and reliability of the laboratory results (less than 5% variability). Numerical simulations demonstrate that if reinforcements are placed up to a depth of one footing width (B) below the foundation, better re-distribution of the load to deeper layers is achieved, thus reducing the stresses and strains underneath the foundation. Numerical simulations and experimental results clearly identify a critical zone between 0.3 and 0.5B, where maximum benefits not only on the bearing capacity but also on the low-strain stiffness of the foundation are obtained. Therefore, soil reinforcement can also be used to reduce low-strain vibrations of foundations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号