首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8370篇
  免费   1335篇
  国内免费   1411篇
测绘学   119篇
大气科学   210篇
地球物理   1752篇
地质学   5375篇
海洋学   981篇
天文学   1707篇
综合类   391篇
自然地理   581篇
  2024年   52篇
  2023年   173篇
  2022年   218篇
  2021年   315篇
  2020年   245篇
  2019年   321篇
  2018年   283篇
  2017年   310篇
  2016年   352篇
  2015年   351篇
  2014年   367篇
  2013年   427篇
  2012年   420篇
  2011年   516篇
  2010年   441篇
  2009年   647篇
  2008年   640篇
  2007年   695篇
  2006年   616篇
  2005年   505篇
  2004年   443篇
  2003年   473篇
  2002年   384篇
  2001年   303篇
  2000年   337篇
  1999年   303篇
  1998年   268篇
  1997年   147篇
  1996年   113篇
  1995年   113篇
  1994年   78篇
  1993年   68篇
  1992年   56篇
  1991年   23篇
  1990年   34篇
  1989年   17篇
  1988年   8篇
  1987年   13篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
961.
We consider the scenario in which the presence of ammonia in the bulk composition of Enceladus plays a pivotal role in its thermochemical evolution. Because ammonia reduces the melting temperature of the ice shell by 100 K below that of pure water ice, small amounts of tidal dissipation can power an “ammonia feedback” mechanism that leads to secondary differentiation of Enceladus within the ice shell. This leads to compositionally distinct zones at the base of the ice shell arranged such that a layer of lower density (and compositionally buoyant) pure water ice underlies the undifferentiated ammonia-dihydrate ice layer above. We then consider a large scale instability arising from the pure water ice layer, and use a numerical model to explore the dynamics of compositional convection within the ice shell of Enceladus. The instability of the layer can easily account for a diapir that is hemispherical in scale. As it rises to the surface, it co-advects the warm internal temperatures towards the outer layers of the satellite. This advected heat facilitates the generation of a subsurface ocean within the ice shell of Enceladus. This scenario can simultaneously account for the origin of asymmetry in surface deformation observed on Enceladus as well as two global features inferred to exist: a large density anomaly within the interior and a subsurface ocean underneath the south polar region.  相似文献   
962.
Europa is bombarded by intense radiation that erodes the surface, launching molecules into a thin “atmosphere” representative of surface composition. In addition to atoms and molecules created in the mostly water ice surface such as H2O, O2, H2, the atmosphere is known to have species representative of trace surface materials. These trace species are carried off with the 10-104 H2O molecules ejected by each energetic heavy ion, a process we have simulated using molecular dynamics. Using the results of those simulations, we found that a neutral mass spectrometer orbiting ∼100 km above the surface could detect species with surface concentrations above ∼0.03%. We have also modeled the atmospheric spatial structure of the volatile species CO2 and SO2 under a variety of assumptions. Detections of these species with moderate time and space resolution would allow us to constrain surface composition, chemistry and to study space weathering processes.  相似文献   
963.
Depth-dependent interior structure models of Mercury are calculated for several plausible chemical compositions of the core and of the mantle. For those models, we compute the associated libration amplitude, obliquity, tidal deformation, and tidal changes in the external potential. In particular we study the relation between the interior structure parameters for five different mantle mineralogies and two different temperature profiles together with two extreme crust density values. We investigate the influence of the core light element concentration, temperature, and melting law on core state and inner and outer core size. We show that a sulfur concentration above 10 wt% is unlikely if the temperature at the core-mantle boundary is above 1850 K and the silicate shell at least 240 km thick. The interior models can only have an inner core if the sulfur weight fraction is below 5 wt% for core-mantle boundary temperature in the 1850-2200 K range. Within our modeling hypotheses, we show that with the expected precision on the moment of inertia the core size can be estimated to a precision of about 50 km and the core sulfur concentration with an error of about 2 wt%. This uncertainty can only be reduced when more information on the mantle mineralogy of Mercury becomes available. However, we show that the uncertainty on the core size estimation can be greatly reduced, to about 25 km, if tidal surface displacements and tidal variations in the external potential are considered.  相似文献   
964.
W.T. Thompson 《Icarus》2009,200(2):351-357
The bright Kreutz Comet C/2007 L3 (SOHO) entered the fields of view of the twin Solar Terrestrial Relations Observatory (STEREO) COR1 telescopes on 7–8 June 2007. The 12° separation between the two spacecraft at the time afforded the opportunity to derive the position of the comet's tail in three-dimensional space using direct triangulation. The track of the comet's orbit is compared against more traditional orbital calculations using observations from the STEREO COR2 telescopes, and from the Large Angle and Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory (SOHO). The shape of the comet's tail shows that it is composed of dust particles released when the comet was between 18 and 22 solar radii, with no significant dust production after that. The comet did not survive perihelion passage, but a rare faint remnant of the comet tail persisted for several hours after the break-up, and was seen by both the SOHO and STEREO coronagraphs to drift slowly away from the Sun. This tail remnant was found to be composed of particles far back from the head of the comet. The motion of the tail remnant shows a loss of angular momentum during the passage through the solar corona. Atmospheric drag is estimated to account for a significant fraction of this change in angular momentum, but indications are that other mechanisms may be required to completely account for the total amount of change.  相似文献   
965.
We present a three-dimensional, fully parallelized, efficient implementation of ionizing ultraviolet (UV) radiation for smoothed particle hydrodynamics ( sph ) including self-gravity. Our method is based on the sph / tree code vine . We therefore call it iVINE (for Ionization + VINE). This approach allows detailed high-resolution studies of the effects of ionizing radiation from, for example, young massive stars on their turbulent parental molecular clouds. In this paper, we describe the concept and the numerical implementation of the radiative transfer for a plane-parallel geometry and we discuss several test cases demonstrating the efficiency and accuracy of the new method. As a first application, we study the radiatively driven implosion of marginally stable molecular clouds at various distances of a strong UV source and show that they are driven into gravitational collapse. The resulting cores are very compact and dense exactly as it is observed in clustered environments. Our simulations indicate that the time of triggered collapse depends on the distance of the core from the UV source. Clouds closer to the source collapse several 105 yr earlier than more distant clouds. This effect can explain the observed age spread in OB associations where stars closer to the source are found to be younger. We discuss possible uncertainties in the observational derivation of shock front velocities due to early stripping of protostellar envelopes by ionizing radiation.  相似文献   
966.
We apply the joint lensing and dynamics code for the analysis of early-type galaxies, 'Combined Algorithm for Unified Lensing and Dynamics ReconstructiON ( cauldron )', to a rotating N -body stellar system with dark matter halo which significantly violates the two major assumptions of the method, i.e. axial symmetry supported by a two-integral distribution function. The goal is to study how cauldron performs in an extreme case, and to determine which galaxy properties can still be robustly recovered. Three data sets, corresponding to orthogonal lines of sight, are generated from the N -body system and analysed with the identical procedure followed in the study of real lens galaxies, adopting an axisymmetric power-law total density distribution. We find that several global properties of the N -body system are recovered with remarkable accuracy, despite the fact that the adopted power-law model is too simple to account for the lack of symmetry of the true density distribution. In particular, the logarithmic slope of the total density distribution is robustly recovered to within less than 10 per cent (with the exception of the ill-constrained very inner regions), the inferred angle-averaged radial profile of the total mass closely follows the true distribution, and the dark matter fraction of the system (inside the effective radius) is correctly determined within ∼10 per cent of the total mass. Unless the line-of-sight direction is almost parallel to the total angular momentum vector of the system, reliably recovered quantities also include the angular momentum, the   V /σ  ratio and the anisotropy parameter δ. We conclude that the cauldron code can be safely and effectively applied to real early-type lens galaxies, also providing reliable information for the systems that depart significantly from the method's assumptions.  相似文献   
967.
968.
A geometric method based on the high-order 3D Voronoi tessellation is proposed for identifying single galaxies, pairs and triplets. This approach allows us to select small galaxy groups and isolated galaxies in different environments and to find the isolated systems. The volume-limited sample of galaxies from the Sloan Digital Sky Survey Data Release 5 spectroscopic survey was used. We conclude that in such small groups as pairs and triplets, segregation by luminosity is clearly observed: galaxies in isolated pairs and triplets are on average two times more luminous than isolated galaxies. We consider the dark matter content in different systems. The median values of mass-to-luminosity ratio are  12 M/L  for the isolated pairs and  44 M/L  for the isolated triplets, and 7 (8)  M/L  for the most compact pairs (triplets). We also found that systems in denser environments have greater rms velocity and mass-to-luminosity ratio.  相似文献   
969.
We discuss short wavelength (inertial wave) instabilities present in the standard two-fluid neutron star model when there is sufficient relative flow along the superfluid neutron vortex array. We demonstrate that these instabilities may be triggered in precessing neutron stars, since the angular velocity vectors of the neutron and proton fluids are misaligned during precession. Our results suggest that the standard (Eulerian) slow precession that results for weak drag between the vortices and the charged fluid (protons and electrons) is not seriously affected by the instability. In contrast, the fast precession, which results when vortices are strongly coupled to the charged component, is generally unstable. The presence of this instability renders the standard (solid body) rotation model for free precession inconsistent and makes unsafe conclusions that have recently been drawn regarding neutron star interiors based on observations of precession in radio pulsars.  相似文献   
970.
Models of the chemical evolution of our Galaxy are extended to include radial migration of stars and flow of gas through the disc. The models track the production of both iron and α-elements. A model is chosen that provides an excellent fit to the metallicity distribution of stars in the Geneva–Copenhagen survey (GCS) of the solar neighbourhood and a good fit to the local Hess diagram. The model provides a good fit to the distribution of GCS stars in the age–metallicity plane, although this plane was not used in the fitting process. Although this model's star formation rate is monotonically declining, its disc naturally splits into an α-enhanced thick disc and a normal thin disc. In particular, the model's distribution of stars in the ([O/Fe], [Fe/H]) plane resembles that of Galactic stars in displaying a ridge line for each disc. The thin-disc's ridge line is entirely due to stellar migration, and there is the characteristic variation of stellar angular momentum along it that has been noted by Haywood in survey data. Radial mixing of stellar populations with high  σ z   from inner regions of the disc to the solar neighbourhood provides a natural explanation of why measurements yield a steeper increase of  σ z   with age than predicted by theory. The metallicity gradient in the interstellar medium is predicted to be steeper than in earlier models, but appears to be in good agreement with data for both our Galaxy and external galaxies. The models are inconsistent with a cut-off in the star formation rate at low gas surface densities. The absolute magnitude of the disc is given as a function of time in several photometric bands, and radial colour profiles are plotted for representative times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号