首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   6篇
  国内免费   2篇
测绘学   4篇
大气科学   6篇
地球物理   25篇
地质学   18篇
综合类   2篇
自然地理   15篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   7篇
  2005年   4篇
  2004年   4篇
  2002年   2篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
21.
We sampled river water at 13 locations in the Pichis basin, a 10 500 km2 large rainforest‐covered drainage basin in Peru, to assess the influence of lithological variability and seasonality on water chemistry. The concentrations of major cations and silica show a strong seasonal dependence and a remarkable variability over short distances that is only weakly reduced in the wet season; cation concentrations in streams differ by up to 100% within a few kilometres. The lowest cation concentrations were associated with relatively cation‐depleted upper Tertiary and lower Quaternary formations, whereas relatively cation‐rich lower Tertiary and Jurassic formations left a clear calcium and sodium signal in the respective rivers. Cluster analysis, in conjunction with boxplots, suggests that the sampling locations can be segregated into three groups based on similarities of their geochemical signals. According to the previously defined criteria, one river is classified as a Group 2 river with 200 < TZ+ < 450 µeq/L, whereas all other rivers fall into Group 3 with 450 < TZ+ < 3000 µeq/L (where TZ+ refers to the total cation charge). Based on a comparison with other studies at different sections of the Amazon mainstem, the river chemistry of our study area is relatively enriched in K+, Mg2+ and Ca2+, and, consequently, has a higher TZ+ value, while being relatively depleted in silica. The influence of lithological variability on water chemistry must be considered in land‐use change studies even at watershed areas of 26–3382 km2. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
22.
We examined how the projected increase in atmospheric CO2 and concomitant shifts in air temperature and precipitation affect water and carbon fluxes in an Asian tropical rainforest, using a combination of field measurements, simplified hydrological and carbon models, and Global Climate Model (GCM) projections. The model links the canopy photosynthetic flux with transpiration via a bulk canopy conductance and semi-empirical models of intercellular CO2 concentration, with the transpiration rate determined from a hydrologic balance model. The primary forcing to the hydrologic model are current and projected rainfall statistics. A main novelty in this analysis is that the effect of increased air temperature on vapor pressure deficit (D) and the effects of shifts in precipitation statistics on net radiation are explicitly considered. The model is validated against field measurements conducted in a tropical rainforest in Sarawak, Malaysia under current climate conditions. On the basis of this model and projected shifts in climatic statistics by GCM, we compute the probability distribution of soil moisture and other hydrologic fluxes. Regardless of projected and computed shifts in soil moisture, radiation and mean air temperature, transpiration was not appreciably altered. Despite increases in atmospheric CO2 concentration (Ca) and unchanged transpiration, canopy photosynthesis does not significantly increase if Ci/Ca is assumed constant independent of D (where Ci is the bulk canopy intercellular CO2 concentration). However, photosynthesis increased by a factor of 1.5 if Ci/Ca decreased linearly with D as derived from Leuning stomatal conductance formulation [R. Leuning. Plant Cell Environ 1995;18:339–55]. How elevated atmospheric CO2 alters the relationship between Ci/Ca and D needs to be further investigated under elevated atmospheric CO2 given its consequence on photosynthesis (and concomitant carbon sink) projections.  相似文献   
23.
We present a high‐resolution pollen record of a 695‐cm‐long sediment core from Laguna Loma Linda, located at an altitude of 310 m in the transitional zone between the savannas of the Llanos Orientales and the Amazonian rainforest, about 100 km from the Eastern Cordillera. Based on eight AMS 14C ages, the record represents the last 8700 14C yr BP. During the period from 8700 to 6000 14C yr BP the vegetation was dominated by grass savanna with only a few woody taxa, such as Curatella and Byrsonima, present in low abundance. Gallery forest along the drainage system apparently was poorly developed. Compared with today, precipitation must have been significantly lower and seasonality stronger. During the period from 6000 to 3600 14C yr BP, rainforest taxa increased markedly, reflecting an increase in precipitation. Rainforest and gallery forest taxa such as Moraceae/Urticaceae, Melastomataceae, Alchornea, Cecropia and Acalypha, were abundant, whereas Poaceae were reduced in frequency. From 3600 to 2300 14C yr BP rainforest taxa continued to increase; Moraceae/Urticaceae became very frequent, and Myrtaceae and Myrsine became common. Savanna vegetation decreased continuously. We infer that precipitation was still increasing, and that the length of the annual dry period possibly shortened. From 2300 14C yr BP onwards, grass savanna (mainly represented by Poaceae) expanded and Mauritia palms became frequent. This reflects increased human impact on the vegetation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
24.
Tasmania's montane temperate rainforests contain some of Australia's most ancient and endemic flora. Recent landscape‐scale fires have impacted a significant portion of these rainforest ecosystems. The complex and rugged topography of Tasmania results in a highly variable influence of fire across the landscape, rendering predictions of ecosystem response to fire difficult. We assess the role of topographic variation in buffering the influence of fire in these endemic rainforest communities. We developed a new 14 000‐year (14‐ka) palaeoecological dataset from Lake Perry, southern Tasmania, and compared it to neighbouring Lake Osborne (<250 m distant) to examine how topographic variations influence fire and vegetation dynamics through time. Repeated fire events during the Holocene cause a decline in montane rainforest taxa at both sites; however, in the absence of fire, rainforest taxa are able to recover. Montane temperate rainforest taxa persisted at Lake Perry until European settlement, whilst these taxa were driven locally extinct and replaced by Eucalyptus species at Lake Osborne after 2.5 ka. Contiguous topographic fire refugia within the Lake Perry catchment probably provided areas of favourable microclimates that discouraged fire spread and supported the recovery of these montane temperate rainforests. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
25.
Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Although these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species‐rich forests is not well known. Many hydrological applications, however, require at least a rough estimate of stemflow volumes based on the characteristics of a forest stand. The need for robust predictions of stemflow motivated us to investigate the relationships between tree characteristics and stemflow volumes in a species‐rich tropical forest located in central Panama. Based on a sampling setup consisting of ten rainfall collectors, 300 throughfall samplers and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. Firstly, stemflow represents a minor hydrological component in the studied 1‐ha forest patch (1.0% of cumulated rainfall). Secondly, in the studied species‐rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Thirdly, predicting stemflow in species‐rich forests based on tree parameters is a difficult task. Although our best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species‐rich forests corroborates this finding. Based on these results and considering that for most hydrological applications, stemflow is only one parameter among others to estimate, we advocate using the base model, i.e. the mean of the stemflow data, to quantify stemflow volumes for a given study area. Studies in species‐rich forests that wish to obtain predictions of stemflow based on tree parameters probably need to conduct a much more extensive sampling than currently implemented by most studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
26.
In a tropical rainforest catchment, shallow piezometers respond almost instantaneously to rainfall, but the dominant ground water recharge mechanisms are not well understood. To improve understanding, the downward movement of soil water on a runoff plot was traced using tritiated water injected at 0·20 m below the surface which marks the lower boundary of active subsurface storm flow. The tritium pulse was translated slowly down the profile, apparently dominated by interstitial piston flow on the lines described by Zimmermann's theoretical model. This recharge mechanism accounted for about 35 per cent of rainfall or 50 per cent of throughfall. The pulse's advance may have also been delayed by the upward movement of soil water indicated by the distribution of hydraulic potential under different hydrological conditions. The result was an increase in soil water transit time particularly below 1·0 m. There was also evidence in the tracer profiles for rapid by-pass flow but the volumes concerned could not be quantified in this experiment.  相似文献   
27.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
28.
Increasing pressure on the tropical environment requires a more thorough understanding of hydrological processes as part of reconciling the conflicting demands of economic development vis-à-vis sustainable land management. Using TOPMODEL, a physically based semi-distributed topohydrological model, we test its validity in modelling the stream flow dynamics (hydrograph) in a 1 ha tropical rainforest catchment in French Guiana. Another objective is through field validation of TOPMODEL to ascertain possible runoff generation mechanisms. The field validation of the temporal and spatial hydrodynamics across a rainfall–runoff event reveals that TOPMODEL may be suited for applications to this particular tropical rainforest environment; in fact, this is possibly the first successful application of such a model within the humid tropics. The main reasons why the model was successful are the presumed low hydraulic conductivities of the subsoil, coupled with the absence of an additional deep groundwater body, the contribution from which has caused difficulties in application of topographically, ‘physically’ based runoff models elsewhere in the humid tropics. © 1997 John Wiley & Sons, Ltd.  相似文献   
29.
Airborne measurements of acetone were performed overthe tropical rainforest in Surinam(2°–7° N, 54°–58° W, 0–12 kmaltitude) during the LBA-CLAIRE campaign in March1998, using a novel proton transfer reaction massspectrometer (PTR-MS) that enables the on-linemonitoring of volatile organic compounds (VOC) with ahigher proton affinity than water. The measuredacetone volume mixing ratios ranged from 0.1 nmol/molup to 8 nmol/mol with an overall average of 2.6nmol/mol and a standard deviation of 1.0 nmol/mol. Theobserved altitude profile and correlations with CO,acetonitrile, propane and wind direction are discussedwith respect to potential acetone sources. No linearcorrelation between acetone and CO mixing ratios wasobserved, at variance with results of previousmeasurement campaigns. The mean acetone/CO ratio(0.022) was substantially higher than typical valuesfound before. The abundance of acetone appears to beinfluenced, but not dominated, by biomass burning,thus suggesting large emissions of acetone and/oracetone precursors, such as possibly 2-propanol, fromliving plants or decaying litter in the rainforest.  相似文献   
30.
Detecting broad scale spatial patterns across the South American rainforest biome is still a major challenge. Although several countries do possess their own, more or less detailed land-cover map, these are based on classifications that appear largely discordant from a country to another. Up to now, continental scale remote sensing studies failed to fill this gap. They mostly result in crude representations of the rainforest biome as a single, uniform vegetation class, in contrast with open vegetations. A few studies identified broad scale spatial patterns, but only when they managed to map a particular forest characteristic such as biomass. The main objective of this study is to identify, characterize and map distinct forest landscape types within the evergreen lowland rainforest at the sub-continental scale of the Guiana Shield (north-east tropical South-America 10° North-2° South; 66° West-50° West). This study is based on the analysis of a 1-year daily data set (from January 1st to December 31st, 2000) from the VEGETATION sensor onboard the SPOT-4 satellite (1-km spatial resolution). We interpreted remotely sensed landscape classes (RSLC) from field and high resolution remote sensing data of 21 sites in French Guiana. We cross-analyzed remote sensing data, field observations and environmental data using multivariate analysis. We obtained 33 remotely sensed landscape classes (RSLC) among which five forest-RSLC representing 78% of the forested area. The latter were classified as different broad forest landscape types according to a gradient of canopy openness. Their mapping revealed a new and meaningful broad-scale spatial pattern of forest landscape types. At the scale of the Guiana Shield, we observed a spatial patterns similarity between climatic and forest landscape types. The two most open forest-RSLCs were observed mainly within the north-west to south-east dry belt. The three other forest-RSLCs were observed in wetter and less anthropized areas, particularly in the newly recognized “Guianan dense forest arch”. Better management and conservation policies, as well as improvement of biological and ecological knowledge, require accurate and stable representations of the geographical components of ecosystems. Our results represent a decisive step in this way for the Guiana Shield area and contribute to fill one of the major shortfall in the knowledge of tropical forests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号