首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   168篇
  国内免费   564篇
测绘学   93篇
大气科学   96篇
地球物理   94篇
地质学   968篇
海洋学   150篇
天文学   131篇
综合类   66篇
自然地理   123篇
  2024年   4篇
  2023年   7篇
  2022年   27篇
  2021年   23篇
  2020年   49篇
  2019年   76篇
  2018年   45篇
  2017年   35篇
  2016年   58篇
  2015年   72篇
  2014年   110篇
  2013年   118篇
  2012年   90篇
  2011年   111篇
  2010年   82篇
  2009年   97篇
  2008年   100篇
  2007年   82篇
  2006年   69篇
  2005年   70篇
  2004年   86篇
  2003年   55篇
  2002年   38篇
  2001年   40篇
  2000年   31篇
  1999年   34篇
  1998年   24篇
  1997年   19篇
  1996年   7篇
  1995年   10篇
  1994年   11篇
  1993年   5篇
  1992年   1篇
  1991年   5篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
排序方式: 共有1721条查询结果,搜索用时 15 毫秒
41.
This paper presents semi‐analytical solutions to Fredlund and Hasan's one‐dimensional consolidation of unsaturated soils with semi‐permeable drainage boundary under time‐dependent loadings. Two variables are introduced to transform two coupled governing equations of pore‐water and pore‐air pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. The pore‐water pressure, pore‐air pressure and settlement are obtained in the Laplace domain. Crump's method is adopted to perform the inverse Laplace transform in order to obtain semi‐analytical solutions in time domain. It is shown that the present solutions are more general and have a good agreement with the existing solutions from literatures. Furthermore, the current solutions can also be degenerated into conventional solutions to one‐dimensional consolidation of unsaturated soils with homogeneous boundaries. Finally, several numerical examples are provided to illustrate consolidation behavior of unsaturated soils under four types of time‐dependent loadings, including instantaneous loading, ramp loading, exponential loading and sinusoidal loading. Parametric studies are illustrated by variations of pore‐air pressure, pore‐water pressure and settlement at different values of the ratio of air–water permeability coefficient, depth and loading parameters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
42.
Stiffened deep mixed (SDM) column is a new ground improvement technique to improve soft soil, which can be used to increase bearing capacity, reduce deformation, and enhance stability of soft soil. This technique has been successfully adopted to support the highway and railway embankments over soft soils in China and other countries. However, there have been limited investigations on its consolidation under embankment loading. This paper developed an analytical solution for the consolidation of embankment over soft soil with SDM column in which core pile is equal to or shorter than outer DM column. The consolidation problem was simplified as a consolidation of composite soil considering the load shear effect of core pile. The developed solution was verified by a comparison with the results computed by three-dimensional (3-D) finite element analysis. A parametric study based on the derived solution was conducted to investigate influence factors—length of core pile, diameter of core pile, diameter of SDM column, modulus of DM column, and permeability coefficient of DM column—on the consolidation behavior of SDM column-supported embankment over soft soil. The developed solution was applied to a case history of SDM column-supported embankment, and a good agreement was found between the predictions and the field measurements.  相似文献   
43.
A bounding surface model is formulated to simulate the behavior of clays that are subject to an anisotropic consolidation stress history. Conventional rotational hardening is revisited from the perspective of thermodynamics. As the free energy cannot be accumulated infinitely upon critical state failure, the deviatoric back stress must vanish. This requires the rotated yield surface to be turned back to eventually align on the hydrostatic axis in the stress plane. Noting that most of the previous propositions violate this restriction, an innovative rotational hardening rule is formulated that is thermodynamically admissible. The bounding surface framework that employs the modified yield surface is applied to simulate elastoplastic deformations for overconsolidated clays, with which the overprediction of strength on the “dry” side can be greatly improved with reasonable results. Other important features, including contractive or dilative response and hardening or softening behavior, can also be well-captured. It has been shown that the model can simulate three types of reconstituted clays that are sheared with initial conditions over a wide range of anisotropic consolidation stress ratios and overconsolidation ratios under both triaxial undrained and drained conditions. Limitations and potential improvement of the model regarding the fabric anisotropy at critical state have been discussed.  相似文献   
44.
In engineering practice, a rapid loading rate can result in ground failure when the strength of soft soils is relatively low, and a multistage loading scheme is always utilized to deal with this situation. Firstly, under a multistage load and the continuous drainage boundary, an analytical solution of excess pore-water pressure and consolidation degree is obtained by virtue of the superposition formula of excess pore-water pressure, and a more general continuous drainage boundary under arbitrary time-dependent load is developed. Then, a comparison with existing analytical solutions is conducted to verify the present solution. A preliminary attempt on applying the continuous drainage boundary into the finite element model is made, and the feasibility of the numerical model for the one-dimensional consolidation under the continuous drainage boundary is verified by comparing the results calculated by FEM with that from present analytical solution. Finally, the consolidation behavior of soil is investigated in detail for different int erface parameters or loading scheme. The results show that, in land reclamation projects, a horizontal drain should be placed close to the boundary with a smaller interface parameter to improve the consolidation efficiency. The degree of consolidation is also related to the applied time-dependent load and interface parameters.  相似文献   
45.
46.
The dynamic response of an end bearing pile embedded in a linear visco‐elastic soil layer with hysteretic type damping is theoretically investigated when the pile is subjected to a time‐harmonic vertical loading at the pile top. The soil is modeled as a three‐dimensional axisymmetric continuum in which both its radial and vertical displacements are taken into account. The pile is assumed to be vertical, elastic and of uniform circular cross section. By using two potential functions to decompose the displacements of the soil layer and utilizing the separation of variables technique, the dynamic equilibrium equation is uncoupled and solved. At the interface of soil‐pile system, the boundary conditions of displacement continuity and force equilibrium are invoked to derive a closed‐form solution of the vertical dynamic response of the pile in frequency domain. The corresponding inverted solutions in time domain for the velocity response of a pile subjected to a semi‐sine excitation force applied at the pile top are obtained by means of inverse Fourier transform and the convolution theorem. A comparison with two other simplified solutions has been performed to verify the more rigorous solutions presented in this paper. Using the developed solutions, a parametric study has also been conducted to investigate the influence of the major parameters of the soil‐pile system on the vertical vibration characteristics of the pile. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
47.
With the aid of integral transform techniques, this paper presents an extended precise integration solution for thermal consolidation problems of a multilayered porous thermo-elastic medium with anisotropic thermal diffusivity and permeability due to a heat source. From the fundamental governing equations, ordinary differential equations are derived by employing Laplace–Hankel transforms. By applying the extended precise integration method, equations in the transformed domain can be solved, and the actual solutions are further obtained by adopting a numerical inverse transformation. The accuracy and feasibility of the proposed theory is demonstrated by contrastive analysis with existing studies. Finally, several examples are carried out to investigate the influence of heat source’s type, axial distance, burial depth of heat source, ratio of thermo-permeability, permeability anisotropy, thermal diffusivity anisotropy and stratification on the thermal consolidation process.  相似文献   
48.
马志伟  陆洋  涂弋  朱传东  郗慧 《测绘学报》2016,45(9):1019-1027
多种类型高分辨率重力场数据的不断增加,使得在局部范围内精化重力场模型成为了可能。本文采用Abel-Poisson核将重力场量表示成有限个径向基函数线性求和的形式,对局部区域的多种重力场数据进行联合建模。为了提高运算速度,运用了基于自适应精化格网算法的最小均方根误差准则(RMS)来求解径向基函数平均带宽。以南海核心地区为例,联合两种不同类型、不同分辨率的重力场资料(大地水准面起伏6'×6'、重力异常2'×2'),构建了局部区域高分辨率的重力场模型。所建模型表示的重力场参量达到了2'×2'的分辨率,对原始的重力异常数据(2'×2')拟合的符合程度达到±0.8×10-5m/s2。结果表明,利用径向基函数方法进行局部重力场建模,避免了球谐函数建模收敛慢的问题,有效提高了模型表示重力场的分辨率。  相似文献   
49.
根据重力梯度观测各分量的方差及协方差信息,提出了利用GOCE梯度数据计算径向重力梯度的优化方法。首先给出了径向重力梯度的计算方法,并深入分析了误差传播规律,通过建立相应的条件极值问题,给出了计算径向重力梯度最优组合因子的方法;通过模拟数据验证了本文所提出的优化因子的优越性。实际数据计算表明:相对于传统方法,采用优化组合因子可使反演所得引力位模型的累积大地水准面精度在250阶时提高约2 cm。由于径向重力梯度不仅可以用于地球引力场模型的求解,也可直接应用于地球物理问题的讨论,因此本文所提出的优化方法也可对部分地球动力学问题的讨论提供方便。  相似文献   
50.
研究了残差地形模型中的非调和性问题,比较了基于棱柱体和球冠体的积分模型,提出了基于球冠体积分的广义残差地形模型。以泊松小波径向基函数为构造基函数,结合广义残差地形模型,融合多源实测重力数据构建了局部区域重力场模型。研究结果表明:基于棱柱体积分的残差地形模型精度较低,在山区可能引入毫伽级以上的误差,建议采用更为接近真实地形表面的球冠体积分模型。相比于原始的残差地形模型,基于球冠体积分的广义残差地形模型能更为精确地逼近局部重力场模型中地形因素引起的高频效应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号