首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   35篇
地球物理   2篇
地质学   80篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有82条查询结果,搜索用时 953 毫秒
1.
The Feiran–Solaf metamorphic belt consists of low-P high-T amphibolite facies, partly migmatized gneisses, schists, amphibolites and minor calc-silicate rocks of metasedimentary origin. There are also thick concordant synkinematic sheets of diorite, tonalite and granodiorite orthogneiss and foliated granite and pegmatite dykelets. The gneissosity (or schistosity) is referred to as S1, and is almost everywhere parallel to lithological layering, S0. This parallelism is not due to transposition. The gneissosity formed during an extensional tectonic event (termed D1), before folding of S0. S1 formed by coaxial pure shear flattening strain (Z normal to S0, i.e. vertical; with X and Y both extensional and lying in S1). This strain also produced chocolate tablet boudinage of some layers and S1-concordant sills and veins. S1 has a strong stretching lineation L1 with rodding characteristics. Within-plane plastic anisotropy (lower ductility along Y compared to along X) resulted in L1-parallel extensional ductile shears and melt filled cracks. Continued shortening of these veins, and back-rotation of foliations on the shears produced intrafolial F1 folds with hinges parallel to the stretching lineation. F1 fold asymmetry variations do not support previous models involving macroscopic F1 folds or syn-gneissosity compressional tectonics. The sedimentary protoliths of the Feiran–Solaf gneisses were probably deposited in a pre-800 Ma actively extending intracratonic rift characterizing an early stage of the break-up of Rodinia.  相似文献   
2.
The Wadi Hafafit Complex (WHC) is an arcuate belt of orthogneisses, migmatites and other high-grade metamorphic rocks, which marks the boundary between the Central Eastern and the South Eastern Deserts of Egypt. In the WHC, gneissic meta-gabbro outlines macroscopic fold interference patterns characterized by elliptical to irregular culminations cored by gneissic meta-tonalite to meta-trondhjemite. The five main culminations of the WHC have previously been labeled A (most northerly), B, C, D and E (most southerly). A detailed structural investigation of B, C, D and E reveals that these structures are a result of the interference of four macroscopic fold phases, the first three of which may represent a single deformation event. The first folding involved sheath-like fold nappes, which were transported to the N or NW, assisted by translation on gently dipping mylonite zones. The regional gneissosity and mineral extension lineations formed during this folding event. The fold nappes were deformed by mainly open upright small macroscopic and mesocopic folds with approximately NE-trending hinges. As a probable continuation of the latter folding, the sheaths were buckled into large macroscopic folds and monoclines with the same NE-trends. The fourth macroscopic folding resulted from shortening along the NE–SW direction, producing mainly NW–SE-trending upright gently plunging folds. Gravitative uplift is disputed as a component of the deformation history of the WHC. The peculiarities of the fold interference pattern result from the interesting behaviour of sheath folds during their refolding.  相似文献   
3.
As the northern segment of the Jiao-Liao-Ji Belt (JLJB), the Palaeoproterozoic Liaoji Belt is a key region for deciphering the formation and evolution of the North China Craton (NCC). In this study, we present the geochronology, geochemical, and isotopic studies on the monzogranitic gneiss, which is one of the major lithotectonic elements of the Liaoji Belt. LA-ICP-MS zircon U–Pb dating reveals that the studied monzogranitic gneisses were formed in the period of 2213–2178 Ma. They are in tectonic contact with the Palaeoproterozoic volcano-sedimentary rocks in the field. The monzogranitic gneisses belong to the high-K calc-alkaline series, and are metaluminous to peraluminous. They have 10,000 Ga/Al ratios of 2.63–3.14 with an average of 2.90, and are thus classified as aluminous A-type granites. Their εNd(t) values vary from ?3.4 to +2.5, indicating heterogeneous source region. The monzogranitic gneisses are characterized by enrichment in LREE and LILE (e.g. Rb, Ba, Th, and K) and depletion in HREE and HFSE (such as Nb, Ta, and Ti), and are typical to magmatism in active continental margins formed in a subduction-related tectonic setting. Taking into account their A-type affinity and regional geological data, we suggest that the monzogranitic gneisses were most probably generated in a local extensional back-arc environment during subduction.  相似文献   
4.
Three types of zircon occur in a complexly deformed and variably migmatized quartzofeldspathic gneiss from the Reynolds Range, central Australia. The oldest type is inherited from the granitic precursor of the gneiss, and is overgrown by a second group of zircon grains that formed during prograde, granulite facies metamorphism. Partial melting of the gneiss resulted in solution of both the inherited and metamorphic zircon. No new zircon growth accompanied crystallization of the partial melt, suggesting loss of zirconium–rich residual fluids. Hydrous, amphibolite facies retrogression of the gneiss and its migmatized variants during late shearing produced new, idiomorphic zircon in both the shear zone and its wall rocks.
Important implications of this study are that (i) zircon has a tendency to dissolve if it comes into direct contact with a melt produced from anhydrous biotite breakdown in a quartzofeldspathic granulite, (ii) melt crystallization is not necessarily accompanied by zircon growth, and (iii) euhedral zircon can grow from a hydrous fluid phase under subsolidus, amphibolite facies conditions, e.g. within shear zones.  相似文献   
5.
The South Karakorum margin, east of the Himalayan syntaxis, consist of an E–W elongated zone of young (10–3 Ma) high‐grade metamorphic rocks (M2) and related migmatitic domes. This late tectono‐metamorphic event post‐dates the Palaeogene (55–37 Ma) phase of thickening of the belt featured by NW–SE structures and associated M1 amphibolite facies metamorphism (0.7 GPa, 700 °C). This M2 metamorphism is characterised by low‐pressure, high‐temperature conditions coeval with migmatite formation in response to a thermal increase of c. 150 °C compared to M1, culminating at a temperature of c. 770 °C and a pressure of 0.5–0.6 GPa. Rapid exhumation of migmatitic domes, at a rate of 5 mm yr?1, was accommodated by vertical extrusion, in the core of E–W crustal‐scale folds. These crustal‐scale folds formed in response to N–S syn‐collisional shortening and were enhanced by thermal weakening of the migmatised continental crust. M2 metamorphism is spatially and temporarily associated with granitoids showing a mantle affinity, firmly suggesting that this could be the advective heat source for the granite and syenite generation and the subsequent migmatisation of the mid‐crustal level. Such relationships between a mantle‐related magmatism and a high‐temperature metamorphism in a convergent shortening context are suggestive of the breakoff of the subducted Indian slab since 20 Ma.  相似文献   
6.
The Central Tianshan Tectonic Zone (CTTZ) is anarrow domain between an early Paleozoic southernTianshan passive continental margin and a late Paleo-zoic northern Tianshan arc zone, which is character-ized by the presence of numerous Precambrian meta-morphic basement blocks. Proterozoic granitoidgneisses and metamorphic sedimentary rocks,namely Xingxingxia and Kawabulag and Tianhugroups, are the most important lithological assem-blages in these metamorphic basement blocks, and alittle of …  相似文献   
7.
孟恩  刘福来  刘建辉  施建荣 《岩石学报》2012,28(9):2793-2806
本文对辽东南长海地区花岗质片麻岩进行了系统的岩石学和地球化学研究,以便对其原岩性质及形成的构造环境给予制约。研究结果表明,研究区内花岗质片麻岩类可划分为富钠和富钾两类花岗质岩石,前者包括黑云二长花岗质片麻岩和花岗闪长质片麻岩,矿物组成主要包括斜长石、石英、黑云母及少量的钾长石等,后者则主要包括花岗质、二长花岗质和糜棱岩化花岗质片麻岩,其矿物组成以钾长石、斜长石、石英和次要的白云母和黑云母为主。地球化学分析结果显示,富钠花岗质片麻岩具有富硅、富钠、高铝、富集LREEs和LILEs、强烈亏损HREEs和HFSEs(Nb、Ta、P、Ti)、轻重稀土强烈分馏、并显示弱负Eu异常和Ba的相对亏损等特征;而富钾花岗质片麻岩则显示高硅、富钾、过铝质的地球化学属性、富集LREEs和LILEs、亏损HREEs和HFSEs,与富钠花岗质岩石相比,轻重稀土分馏程度相对较弱、HFSEs以及Ba相对于Rb和Th的亏损程度更强,并显示中等负Eu异常和强烈的Sr负异常等特征。上述特征表明,辽东南长海地区富钠花岗质片麻岩应起源于中酸性陆壳物质的部分熔融,并可能有玄武质物质的加入,原岩应为具有活动大陆边缘属性的花岗闪长岩,其形成应与狼林地块(或胶辽地块)东南及南部先存洋盆向陆块之下的俯冲作用相联系;而富钾花岗质片麻岩应形成于中酸性陆壳物质的部分熔融,原岩为具有碰撞型花岗岩属性的碱性花岗岩,其形成应与洋壳消减闭合、陆陆碰撞拼贴相联系。  相似文献   
8.
Petrochemical studies of granitoid rocks from the eastern part of Kumaun region suggest that the leading edge of India represents an active arc during Late Paleoproterozoic times. It has been observed that melt generation for granodiorite rocks from the eastern Almora Nappe and Chhiplakot klippe along with the Askot klippe was caused through a subduction‐related process involving hydrous partial melting of a Paleoproterozoic amphibole‐ and/or garnet‐bearing mafic source with the involvement of sediments from the subduction zone. The medium‐ to high‐K basic rocks, common in subduction‐related magmatic arcs, can also explain the generation of the high‐K granodiorites of the Chhiplakot klippe. The augen gneisses from the eastern Almora nappe and Chhiplakot klippe along with the Askot klippe further show geochemical similarity with the associated granodiorites, suggesting there is a genetic linkage with one another.  相似文献   
9.
张瑞英  张成立  孙勇 《岩石学报》2013,29(7):2265-2280
华北克拉通中部中条山区涑水杂岩是华北克拉通新太古代TTG质片麻岩地体之一。为了探讨华北克拉通新太古代构造-岩浆事件的性质及早前寒武纪地壳的形成和演化,选择涑水杂岩中TTG质岩石进行研究。研究表明这套TTG质岩石富Na、高Al、Sr,低Y、Cr、Ni含量。稀土元素配分曲线右倾,富Rb、Ba等大离子亲石元素,强烈亏损Nb、Ta等高场强元素。LA-ICP-MS锆石U-Pb定年结果表明,这套TTG质片麻岩形成于2553~2561Ma,属新太古代晚期产物。锆石Lu-Hf同位素分析结果显示εHf(t)为正值,两阶段模式年龄集中在2.7~2.8Ga。结合涑水杂岩中TTG质片麻岩的岩石地球化学特征,认为这套TTG片麻岩可能主要来自2.7~2.8Ga的下地壳镁铁质岩石在新太古代晚期的部分熔融,可能有少量的地幔物质加入。考虑同期发育大量花岗质岩石的事实,说明新太古代晚期在华北克拉通中部并不存在大规模的俯冲作用,华北克拉通在新太古代晚期已经基本成型。结合前人研究成果和本文锆石Lu-Hf同位素分析结果,提出中条山区~2.5Ga岩浆事件代表一期重要的陆壳再造事件。  相似文献   
10.
吉林省东南部通化地区广泛出露早前寒武纪花岗质片麻岩类,其岩石组成、形成时代和成因对深化认识华北克拉通东北缘早期地壳形成演化历史具有重要意义。本文系统的岩石学、锆石U-Pb年代学、元素和Lu-Hf同位素地球化学等研究结果表明,这些花岗质片麻岩类按照SiO2质量分数总体可划分为高硅和低硅两组:前者主要由二长花岗质片麻岩、奥长花岗质片麻岩及英云闪长质片麻岩组成,其原岩形成于2 549~2 557 Ma;而后者由石英二长闪长质片麻岩及花岗闪长岩质片麻岩组成,其原岩形成于2 534~2 552 Ma;并且两组岩石都含有约2 600 Ma的捕获锆石,共同遭受了约2 500 Ma变质作用的影响。地球化学分析结果显示,低硅岩组具有较高的MgO、CaO、Na2O质量分数,属于高钾—中钾钙碱性系列,并且富集LREE、亏损HREE和HFSE;与之相比,高硅岩组则具有较低的MgO和CaO质量分数,显示更强烈的轻、重稀土元素分馏以及Nb、Ta、P、Ti等亏损的特征;但两者均具有较弱的正或负Eu异常。结合区域最新研究成果,认为研究区低硅和高硅两组岩石应具有相同的源区,其形成可能与大洋板片俯冲、岩浆底侵引起的地壳部分熔融作用有关。此外,两组岩石具有相似的εHft)值(2.72~7.95)和模式年龄(2.86~2.55 Ga),暗示区域主要存在新太古代晚期地壳生长事件;结合区域内变质火山岩的研究进展,认为吉林省东南部通化地区花岗质片麻岩类可能形成于活动大陆边缘的构造背景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号