首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6548篇
  免费   1303篇
  国内免费   1772篇
测绘学   523篇
大气科学   1601篇
地球物理   2789篇
地质学   3162篇
海洋学   570篇
天文学   41篇
综合类   466篇
自然地理   471篇
  2024年   41篇
  2023年   107篇
  2022年   211篇
  2021年   272篇
  2020年   252篇
  2019年   323篇
  2018年   228篇
  2017年   252篇
  2016年   281篇
  2015年   294篇
  2014年   360篇
  2013年   388篇
  2012年   393篇
  2011年   377篇
  2010年   343篇
  2009年   379篇
  2008年   341篇
  2007年   420篇
  2006年   439篇
  2005年   407篇
  2004年   341篇
  2003年   319篇
  2002年   291篇
  2001年   294篇
  2000年   269篇
  1999年   287篇
  1998年   282篇
  1997年   250篇
  1996年   256篇
  1995年   264篇
  1994年   194篇
  1993年   116篇
  1992年   81篇
  1991年   67篇
  1990年   52篇
  1989年   36篇
  1988年   46篇
  1987年   13篇
  1986年   10篇
  1985年   5篇
  1984年   17篇
  1983年   1篇
  1982年   4篇
  1979年   9篇
  1978年   2篇
  1977年   7篇
  1954年   2篇
排序方式: 共有9623条查询结果,搜索用时 157 毫秒
231.
In this study, the climate teleconnections with meteorological droughts are analysed and used to develop ensemble drought prediction models using a support vector machine (SVM)–copula approach over Western Rajasthan (India). The meteorological droughts are identified using the Standardized Precipitation Index (SPI). In the analysis of large‐scale climate forcing represented by climate indices such as El Niño Southern Oscillation, Indian Ocean Dipole Mode and Atlantic Multidecadal Oscillation on regional droughts, it is found that regional droughts exhibits interannual as well as interdecadal variability. On the basis of potential teleconnections between regional droughts and climate indices, SPI‐based drought forecasting models are developed with up to 3 months' lead time. As traditional statistical forecast models are unable to capture nonlinearity and nonstationarity associated with drought forecasts, a machine learning technique, namely, support vector regression (SVR), is adopted to forecast the drought index, and the copula method is used to model the joint distribution of observed and predicted drought index. The copula‐based conditional distribution of an observed drought index conditioned on predicted drought index is utilized to simulate ensembles of drought forecasts. Two variants of drought forecast models are developed, namely a single model for all the periods in a year and separate models for each of the four seasons in a year. The performance of developed models is validated for predicting drought time series for 10 years' data. Improvement in ensemble prediction of drought indices is observed for combined seasonal model over the single model without seasonal partitions. The results show that the proposed SVM–copula approach improves the drought prediction capability and provides estimation of uncertainty associated with drought predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
232.
Stream water temperature plays a significant role in aquatic ecosystems where it controls many important biological and physical processes. Reliable estimates of water temperature at the daily time step are critical in managing water resources. We developed a parsimonious piecewise Bayesian model for estimating daily stream water temperatures that account for temporal autocorrelation and both linear and nonlinear relationships with air temperature and discharge. The model was tested at 8 climatically different basins of the USA and at 34 sites within the mountainous Boise River Basin (Idaho, USA). The results show that the proposed model is robust with an average root mean square error of 1.25 °C and Nash–Sutcliffe coefficient of 0.92 over a 2‐year period. Our approach can be used to predict historic daily stream water temperatures in any location using observed daily stream temperature and regional air temperature data.  相似文献   
233.
Prediction intervals (PIs) are commonly used to quantify the accuracy and precision of a forecast. However, traditional ways to construct PIs typically require strong assumptions about data distribution and involve a large computational burden. Here, we improve upon the recent proposed Lower Upper Bound Estimation method and extend it to a multi‐objective framework. The proposed methods are demonstrated using a real‐world flood forecasting case study for the upper Yangtze River Watershed. Results indicate that the proposed methods are able to efficiently construct appropriate PIs, while outperforming other methods including the widely used Generalized Likelihood Uncertainty Estimation approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
234.
Establishing a universal watershed‐scale erosion and sediment yield prediction model represents a frontier field in erosion and soil/water conservation. The research presented here was conducted on the Chabagou watershed, which is located in the first sub‐region of the hill‐gully area of the Loess Plateau, China. A back‐propagation artificial neural model for watershed‐scale erosion and sediment yield was established, with the accuracy of the model, then compared with that of multiple linear regression. The sensitivity degree of various factors to erosion and sediment yield was quantitatively analysed using the default factor test. On the basis of the sensitive factors and the fractal information dimension, the piecewise prediction model for erosion and sediment yield of individual rainfall events was established and further verified. The results revealed the back‐propagation artificial neural network model to perform better than the multiple linear regression model in terms of predicting the erosion modulus, with the former able to effectively characterize dynamic changes in sediment yield under comprehensive factor conditions. The sensitivity of runoff erosion power and runoff depth to the erosion and sediment yield associated with individual rainfall events was found to be related to the complexity of surface topography. The characteristics of such a hydrological response are thus closely related to topography. When the fractal information dimension is greater than the topographic threshold, the accuracy of prediction using runoff erosion power is higher than that of using runoff depth. In contrast, when the fractal information dimension is smaller than the topographic threshold, the accuracy of prediction using runoff depth is higher than that of using runoff erosion power. The developed piecewise prediction model for watershed‐scale erosion and sediment yield of individual rainfall events, which introduces runoff erosion power and runoff depth using the fractal information dimension as a boundary, can be considered feasible and reliable and has a high prediction accuracy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
235.
This paper analyses the effect of rain data uncertainty on the performance of two hydrological models with different spatial structures: a semidistributed and a fully distributed model. The study is performed on a small catchment of 19.6 km2 located in the north‐west of Spain, where the arrival of low pressure fronts from the Atlantic Ocean causes highly variable rainfall events. The rainfall fields in this catchment during a series of storm events are estimated using rainfall point measurements. The uncertainty of the estimated fields is quantified using a conditional simulation technique. Discharge and rain data, including the uncertainty of the estimated rainfall fields, are then used to calibrate and validate both hydrological models following the generalized likelihood uncertainty estimation (GLUE) methodology. In the storm events analysed, the two models show similar performance. In all cases, results show that the calibrated distribution of the input parameters narrows when the rain uncertainty is included in the analysis. Otherwise, when rain uncertainty is not considered, the calibration of the input parameters must account for all uncertainty in the rainfall–runoff transformation process. Also, in both models, the uncertainty of the predicted discharges increase in similar magnitude when the uncertainty of rainfall input increase.  相似文献   
236.
ABSTRACT

A dipole structure appears in the sea surface height off the central coast of Vietnam during boreal summer in the South China Sea. This dipole, which possesses a chlorophyll signature associated with higher phytoplankton concentrations arising from nutrient upwelling, is important for the productivity of local fisheries. Multi-satellite sea level anomalies are used to investigate the life cycle of the dipole structure. By applying empirical orthogonal function (EOF) analysis, the third EOF mode (EOF 3) is found to represent the major variations of the dipole structure. By removing the temporal noise of EOF 3, a South China Sea dipole index is defined. This index captures the life cycle of the dipole including its generation, mature strength, and final termination. Both one-dimensional and two-dimensional forecasts are generated using a statistical forecasting method that combines singular-spectrum analysis and the maximum entropy method. The appearance of the dipole structure can be predicted with an accuracy of 78% at one-month lead times and an accuracy of 61% at one-year lead times.  相似文献   
237.
The soil conservation service (now Natural Resources Conservation Service) Curve Number (SCS-CN), one of the most commonly used methods for surface runoff prediction. The runoff calculated by this method was very sensitive to CN values. In this study, CN values were calculated by both arithmetic mean (CN_C) and least square fit method (CN_F) using observed rainfall-runoff data from 43 sites in the Loess Plateau region, which are considerably different from the CN2 values obtained from the USDA-SCS handbook table (CN_T). The results showed that using CN_C instead of CN_T for each watershed produce little improvement, while replacing CN_T with CN_F improves the performance of the original SCS-CN method, but still performs poorly in most study sites. This is mainly due to the SCS-CN method using a constant CN value and discounting of the temporal variation in rainfall-runoff process. Therefore, three factors—soil moisture, rainfall depth and intensity—affecting the surface runoff variability are considered to reflect the variation of CN in each watershed, and a new CN value was developed. The reliability of the proposed method was tested with data from 38 watersheds, and then applied to the remaining five typical watersheds using the optimized parameters. The results indicated that the proposed method, which boosted the model efficiencies to 81.83% and 74.23% during calibration and validation cases, respectively, performed better than the original SCS-CN and the Shi and Wang (2020b) method, a modified SCS-CN method based on tabulated CN value. Thus, the proposed method incorporating the influence of the temporal variability of soil moisture, rainfall depth, and intensity factors suggests an accurate runoff prediction for general applications under different hydrological and climatic conditions on the Loess Plateau region.  相似文献   
238.
高速的城市扩展给社会发展带来了无比的活力。但是,也带来了一系列影响社会经济可持续发展的问题。因此,建立城市扩展预测模型对城市空间扩展预测有着实际的意义。本文主要是根据射线预测法的相关理论,使用Map Basic编程和Map Info软件进行相关操作,对济南市进行城市空间扩展预测并对预测进行分析,验证射线预测法的准确性。  相似文献   
239.
重大工程建设一般会有定期的沉降和变形监测,本研究利用具有规律变化的Logistic和Gompertz曲线模型进行拟合,并以某大型发电厂为研究对象,利用近15年的监测数据,建立预测模型并进行精度评估。研究结果表明,若监测数据具有一定程度的稳定性,并对计算时监测数据进行合理取舍,对采取的全区、分区平均值或单一点高度值的检测数据,运用Logistic和Gompertz曲线模型来预测大型建筑物的沉降情况是可行的。  相似文献   
240.
针对危岩变形预测问题,本文以非齐次指数序列的灰色模型(NGM)作为危岩变形预测的基本模型,通过对望霞危岩变形的分析结果显示,NGM(1,1,k,c)模型拟合效果明显优于GM(1,1)模型,说明危岩变形趋势更接近于非齐次指数序列。利用NGM(1,1,k,c)模型结合改进切线角可对危岩变形趋势进行分析预测,可作为危岩稳定性和发展趋势的评估依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号