首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9351篇
  免费   1293篇
  国内免费   1361篇
测绘学   1987篇
大气科学   538篇
地球物理   1720篇
地质学   4948篇
海洋学   539篇
天文学   53篇
综合类   943篇
自然地理   1277篇
  2024年   40篇
  2023年   175篇
  2022年   429篇
  2021年   487篇
  2020年   423篇
  2019年   519篇
  2018年   282篇
  2017年   374篇
  2016年   434篇
  2015年   406篇
  2014年   590篇
  2013年   580篇
  2012年   581篇
  2011年   585篇
  2010年   513篇
  2009年   521篇
  2008年   536篇
  2007年   623篇
  2006年   532篇
  2005年   432篇
  2004年   411篇
  2003年   388篇
  2002年   327篇
  2001年   322篇
  2000年   248篇
  1999年   221篇
  1998年   215篇
  1997年   159篇
  1996年   131篇
  1995年   127篇
  1994年   116篇
  1993年   75篇
  1992年   63篇
  1991年   28篇
  1990年   26篇
  1989年   23篇
  1988年   24篇
  1987年   16篇
  1986年   11篇
  1985年   3篇
  1984年   6篇
  1982年   1篇
  1977年   2篇
排序方式: 共有10000条查询结果,搜索用时 682 毫秒
251.
Prediction of creep characteristic of rock under varying environment   总被引:2,自引:0,他引:2  
The strain developed due to creep is mainly proportional to the logarithm of the time under load, and is mostly proportional to the stress and temperature. At higher temperature the creep rate falls slowly with respect to time, and the creep strain is proportional to a fractional power of time, with the exponent increasing as the temperature increases and reaching a value approximately one-third at temperatures of about 0.5°C. At these temperatures, the creep increases with stress according to a power greater than unity and possibly exponentially. It increases with temperature as (−U/kT), where U is an activation energy and k is Boltzman’s constant. There are different methods to determine the creep strain and the energy of Jog (B) including experimental methods, multivariate regression analysis, and by numerical simulation. These methods are less cumbersome and time consuming. In the present investigation, artificial neural network technique has been used for prediction of the creep strain and energy of Jog (B). Two different networks have been tested and validated. Both the networks have four input neurons and one hidden layer with five neurons, and one output neuron. The data for different rocks at temperatures up to 750°C under conditions of compressive or tortional stress are taken from the literatures. The training and testing data sets used were 163 and 14, respectively. To deal with the problem of overfitting of data, Bayesian regulation has been used and network is trained with suitable training epochs. The coefficients of correlation among the predicted and observed values are found high and they improve the confidence of the users. The mean absolute percentage error obtained are also very low.  相似文献   
252.
253.
Habitat fragmentation in channel networks and riverine ecosystems is increasing globally due to the construction of barriers and river regulation. The resulting divergence from the natural state poses a threat to ecosystem integrity. Consequently, a trade‐off is required between the conservation of biodiversity in channel networks and socio‐economic factors including power generation, potable water supplies, fisheries, and tourism. Many of Scotland's rivers are regulated for hydropower generation but also support populations of Atlantic salmon (Salmo salar L.) that have high economic and conservation value. This paper investigates the use of connectivity metrics and weightings to assess the impact of river barriers (impoundments) associated with hydropower regulation on natural longitudinal channel connectivity for Atlantic salmon. We applied 2 different weighting approaches in the connectivity models that accounted for spatial variability in habitat quality for spawning and fry production and contrasted these models with a more traditional approach using wetted area. Assessments of habitat loss using the habitat quality weighted models contrasted with those using the less biologically relevant wetted area. This highlights the importance of including relevant ecological and hydrogeomorphic information in assessing regulation impacts on natural channel connectivity. Specifically, we highlight scenarios where losing a smaller area of productive habitat can have a larger impact on Atlantic salmon than losing a greater area of less suitable habitat. It is recommended that future channel connectivity assessments should attempt to include biologically relevant weightings, rather than relying on simpler metrics like wetted area which can produce misleading assessments of barrier impacts.  相似文献   
254.
Saltwater intrusion is a serious issue in estuarine deltas all over the world due to rapid urban sprawl and water shortage. Therefore, detecting the major flow paths or locations at risk of saltwater intrusion in estuarine ecosystems is important for mitigating saltwater intrusion. In this paper, we introduce a centrality index, the betweenness centrality (BC), to address this problem. Using the BC as the weighted attribute of the river network, we identify the critical confluences for saltwater intrusion and detect the preferential flow paths for saltwater intrusion through the least‐cost‐path algorithm from a graph theory approach. Moreover, we analyse the responses of the BC values of confluences calculated in the river network to salinity. Our results show that the major flow paths and critical confluences for saltwater intrusion in a deltaic river network can be represented by the least cost paths and the BC values of confluences, respectively. In addition, a significant positive correlation between the BC values of confluences and salinity is determined in the Pearl River Delta. Changes in the salinity can produce significant variation in the BC values of confluences. Therefore, freshwater can be diverted into these major flow paths and critical confluences to improve river network management under saltwater intrusion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
255.
西宝山耐火黏土矿为沉积型矿床,目前揭露1个耐火黏土矿矿层,赋存于石盒子群万山组底部“B”层黏土岩的下部,厚度较稳定,勘查开发潜力较大。通过对其地质特征、矿层特征、矿石结构构造及矿床成因分析,提出了找矿方向。认为该耐火黏土矿受沉积地层控制,呈层状分布,分布较稳定。依据该区地层产出情况,在青龙山断裂与禹王山断裂之间及两侧均具有良好的找矿前景,这为下一步找矿工作奠定了基础。  相似文献   
256.
正20142366Bi Yuanqing(Institute of Geophysical and Geochemical Survey Technology of Anhui Province,Hefei 230022,China);Fang Junhua Analysis of Ore-Prospecting Potential in the Taojiaxiang Mining Site,Zongyang County(Geology of Anhui,ISSN1005-6157,CN34-1111/P,23(4),2013,p.256-260,5illus.,10refs.)  相似文献   
257.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
258.
259.
An effective approach to modeling the geomechanical behavior of the network and its permeability variation is to use a poroelastic displacement discontinuity method (DDM). However, the approach becomes rather computationally intensive for an extensive system of cracks, particularly when considering coupled diffusion/deformation processes. This is because of additional unknowns and the need for time‐marching schemes for the numerical integration. The Fast Multipole Method (FMM) is a technique that can accelerate the solution of large fracture problems with linear complexity with the number of unknowns both in memory and CPU time. Previous works combining DDM and FMM for large‐scale problems have accounted only for elastic rocks, neglecting the fluid leak‐off from the fractures into the matrix and its influence on pore pressure and stress field. In this work we develop an efficient geomechanical model for large‐scale natural fracture networks in poroelastic reservoirs with fracture flow in response to injection and production operations. Accuracy and computational performance of the proposed method with those of conventional poroelastic DDM are compared through several case studies involving up to several tens of thousands of boundary elements. The results show the effectiveness of the FMM approach to successfully evaluate field‐scale problems for the design of exploitation strategies in unconventional geothermal and petroleum reservoirs. An example considering faults reveals the impact of reservoir compartmentalization because of sealing faults for both geomechanical and flow variables under elastic and poroelastic rocks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
260.
Watershed delineation is a required step when conducting any spatially distributed hydrological modelling. Automated approaches are often proposed to delineate a watershed based on a river network extracted from the digital elevation model (DEM) using the deterministic eight‐neighbour (D8) method. However, a realistic river network cannot be derived from conventional DEM processing methods for a large flat area with a complex network of rivers, lakes, reservoirs, and polders, referred to as a plain river network region (PRNR). In this study, a new approach, which uses both hydrographic features and DEM, has been developed to address the problems of watershed delineation in PRNR. It extracts the river nodes and determines the flow directions of the river network based on a vector‐based hydrographic feature data model. The river network, lakes, reservoirs, and polders are then used to modify the flow directions of grid cells determined by D8 approach. The watershed is eventually delineated into four types of catchments including lakes, reservoirs, polders, and overland catchments based on the flow direction matrix and the location of river nodes. Multiple flow directions of grid cells are represented using a multi‐direction encoding method, and multiple outflows of catchments are also reflected in the topology of catchments. The proposed approach is applied to the western Taihu watershed in China. Comparisons between the results obtained from the D8 approach, the ‘stream burning’ approach, and those from the proposed approach clearly demonstrate an improvement of the new approach over the conventional approaches. This approach will benefit the development of distributed hydrological models in PRNR for the consideration of different types and multiple inlets and outlets of catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号