首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   4篇
  国内免费   1篇
大气科学   1篇
地球物理   1篇
地质学   22篇
海洋学   8篇
天文学   3篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2015年   2篇
  2013年   3篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2008年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
Sediment from the Attawapiskat area near James Bay, Northern Ontario was sampled for micromorphological analyses. The sediment is a glacial diamicton (till) of subglacial origin. The till contains entrained and scavenged sediments of proglacial and/or subglacial glaciofluvial/glaciolacustrine origin from a subglacial deforming layer that was emplaced due to both stress reduction and/or porewater dissipation. Evidence of porewater escape, clay translocation and other microstructures all point to emplacement under active subglacial bed deformation. The limited number of edge to edge (ee) grain crushing events, however, point to lower stress levels than might anticipated under a thin fast ice lobe of the James Bay during the Middle Pliocene. Microstructures of Pleistocene tills were quantitatively compared with the Attawapiskat till and the limited number of ee events at Attawapiskat further highlighted that grain to grain contact was curtailed possibly due to high till porosity, high porewater pressures and low strain rates or alternatively due to a high clay matrix component reducing grain crushing contact events. It is suggested that this Middle Pliocene till may be indicative of sediments emplaced under ice lobe surging conditions or fast ice stream subglacial environments. This proposal has significant implications for the glaciodynamics of this part of the Middle Pliocene James Bay lobe. This research highlights a crucial link between subglacial conditions, till microstructural analyses and glaciodynamics.  相似文献   
32.
This paper regards the lower Pleistocene temperate-water carbonate deposits disconformably overlying an escarpment made up of faulted Cretaceous to Miocene limestones of the Apulia Foreland (southern Italy). Study deposits discontinuously crop out along the present-day eastern Salento sea cliff, and form isolated fan-shaped bodies, up to 1 km wide and up to 40 to 50 m thick, each of them covering an area of a few square kilometres. The internal arrangement of beds is represented by up to 25° to 30° lobate, seaward dipping clinobeds thinning and onlapping onto a rocky foreslope in the proximal sector and passing to gently inclined to sub-horizontal strata in the distal sector. Seven facies were distinguished, mainly composed of coarse-grained skeletal carbonates made up of a heterozoan association including coralline algae, large and small benthic foraminifera, echinoids, molluscs, bryozoans and serpulids. Since clinobeds were formed thanks to hyperconcentrated density flows (grain flows) bypassing the upper part of the inherited escarpment, these skeletal grains represent ex situ deposits whose shallow-marine factory was located upward (landward) with respect to the bypassed zone, likely in the almost flat area on top of the Salento Peninsula. Clinobeds are often affected by tens of metres wide and long channel-like structures interpreted as landslide scars. Inside these gullies, contorted beds (slumps) or matrix-supported intra-bioclastic floatstone/rudstone (massive deposits) are present. The occurrence of supercritical-flow structures (for example, backset-bedded beds) indicates the development of hydraulic jumps along the steep slope of gullies. Since these clinostratified, fan-shaped carbonate bodies represent carbonate slopes, and that the latter are known as aprons, normally related to linear sourced sediments, an acceptable oxymoron for studied fan-shaped carbonate bodies is suggested: ‘isolated base-of-slope aprons’.  相似文献   
33.
High-frequency (HF) radars based on ground-wave propagation are used for remotely sensing ocean surface currents and gravity waves. For some 20 years a number of systems have been developed taking advantage of improved electronics and computer techniques. However, the performance of these systems are limited by physical constraints, which are due to HF wave propagation and scattering as well as to the technical design of the measuring system. Attenuation of the HF ground-wave is strongly dependent on the radio frequency and sea-water conductivity. Experimental data confirm the predicted decrease of propagation range with decreasing conductivity. HF radar systems use different methods of spatial resolution both in range and azimuth. Range resolution by means of short pulses and frequency-modulated chirps is compared, as well as azimuthal resolution by means of beam forming and direction finding (phase comparison). The emphasis is placed on recent developments.  相似文献   
34.
ABSTRACT The Upper Carboniferous deep‐water rocks of the Shannon Group were deposited in the extensional Shannon Basin of County Clare in western Ireland and are superbly exposed in sea cliffs along the Shannon estuary. Carboniferous limestone floors the basin, and the basin‐fill succession begins with the deep‐water Clare Shales. These shales are overlain by various turbidite facies of the Ross Formation (460 m thick). The type of turbidite system, scale of turbidite sandstone bodies and the overall character of the stratigraphic succession make the Ross Formation well suited as an analogue for sand‐rich turbidite plays in passive margin basins around the world. The lower 170 m of the Ross Formation contains tabular turbidites with no channels, with an overall tendency to become sandier upwards, although there are no small‐scale thickening‐ or thinning‐upward successions. The upper 290 m of the Ross Formation consists of turbidites, commonly arranged in thickening‐upward packages, and amalgamated turbidites that form channel fills that are individually up to 10 m thick. A few of the upper Ross channels have an initial lateral accretion phase with interbedded sandstone and mudstone deposits and a subsequent vertical aggradation phase with thick‐bedded amalgamated turbidites. This paper proposes that, as the channels filled, more and more turbidites spilled further and further overbank. Superb outcrops show that thickening‐upward packages developed when channels initially spilled muds and thin‐bedded turbidites up to 1 km overbank, followed by thick‐bedded amalgamated turbidites that spilled close to the channel margins. The palaeocurrent directions associated with the amalgamated channel fills suggest a low channel sinuosity. Stacks of channels and spillover packages 25–40 m thick may show significant palaeocurrent variability at the same stratigraphic interval but at different locations. This suggests that individual channels and spillover packages were stacked into channel‐spillover belts, and that the belts also followed a sinuous pattern. Reservoir elements of the Ross system include tabular turbidites, channel‐fill deposits, thickening‐upward packages that formed as spillover lobes and, on a larger scale, sinuous channel belts 2·5–5 km wide. The edges of the belts can be roughly defined where well‐packaged spillover deposits pass laterally into muddier, poorly packaged tabular turbidites. The low‐sinuosity channel belts are interpreted to pass downstream into unchannellized tabular turbidites, equivalent to lower Ross Formation facies.  相似文献   
35.
《Sedimentology》2018,65(1):151-190
This study documents the character and occurrence of hybrid event beds (HEBs) deposited across a range of deep‐water sub‐environments in the Cretaceous–Palaeocene Gottero system, north‐west Italy. Detailed fieldwork (>5200 m of sedimentary logs) has shown that hybrid event beds are most abundant in the distal confined basin‐plain domain (>31% of total thickness). In more proximal sectors, hybrid event beds occur within outer‐fan and mid‐fan lobes (up to 15% of total thickness), whereas they are not observed in the inner‐fan channelized area. Six hybrid event bed types (HEB‐1 to HEB‐6) were differentiated mainly on basis of the texture of their muddier and chaotic central division (H3). The confined basin‐plain sector is dominated by thick (maximum 9·57 m; average 2·15 m) and tabular hybrid event beds (HEB‐1 to HEB‐4). Their H3 division can include very large substrate slabs, evidence of extensive auto‐injection and clast break‐up, and abundant mudstone clasts set in a sandy matrix (dispersed clay ca 20%). These beds are thought to have been generated by highly energetic flows capable of delaminating the sea floor locally, and carrying large rip‐up clasts for relatively short distances before arresting. The unconfined lobes of the mid‐fan sector are dominated by thinner (average 0·38 m) hybrid event beds (HEB‐5 and HEB‐6). Their H3 divisions are characterized by floating mudstone clasts and clay‐enriched matrices (dispersed clay >25%) with hydraulically fractionated components (mica, organic matter and clay flocs). These hybrid event beds are thought to have been deposited by less energetic flows that underwent early turbulence damping following incorporation of mud at proximal locations and by segregation during transport. Although there is a tendency to look to external factors to account for hybrid event bed development, systems like the Gottero imply that intrabasinal factors can also be important; specifically, the type of substrate available (muddy or sandy) and where and how erosion is achieved across the system producing specific hybrid event bed expressions and facies tracts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号