首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1098篇
  免费   182篇
  国内免费   286篇
测绘学   21篇
大气科学   81篇
地球物理   114篇
地质学   1125篇
海洋学   56篇
天文学   1篇
综合类   54篇
自然地理   114篇
  2024年   10篇
  2023年   34篇
  2022年   51篇
  2021年   49篇
  2020年   55篇
  2019年   58篇
  2018年   37篇
  2017年   60篇
  2016年   45篇
  2015年   53篇
  2014年   68篇
  2013年   65篇
  2012年   66篇
  2011年   69篇
  2010年   52篇
  2009年   61篇
  2008年   58篇
  2007年   58篇
  2006年   57篇
  2005年   50篇
  2004年   60篇
  2003年   54篇
  2002年   31篇
  2001年   32篇
  2000年   45篇
  1999年   33篇
  1998年   33篇
  1997年   29篇
  1996年   28篇
  1995年   23篇
  1994年   24篇
  1993年   18篇
  1992年   20篇
  1991年   14篇
  1990年   17篇
  1989年   17篇
  1988年   10篇
  1987年   9篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
排序方式: 共有1566条查询结果,搜索用时 218 毫秒
71.
Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono‐metamorphic processes, however, they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron‐based X‐ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite–garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated garnet clusters with increasing strain. The microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. The microtomographic observations were combined with light microscope and backscatter electron images as well as electron microprobe (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X‐ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low‐strain domain, garnet grains form a well interconnected large garnet aggregate that develops throughout the entire sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow, and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet shows a near‐random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo‐nucleation and overgrowth. Microprobe chemical analysis revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more almandine‐rich. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localization, and their rearrangement into individual garnet clusters through a combination of garnet coalescence and overgrowth while the rock was deforming.  相似文献   
72.
Garnet (10 vol.%; pyrope contents 34–44 mol.%) hosted in quartzofeldspathic rocks within a large vertical shear zone of south Madagascar shows a strong grain‐size reduction (from a few cm to ~300 μm). Electron back‐scattered diffraction, transmission electron microscopy and scanning electron microscope imaging coupled with quantitative analysis of digitized images (PolyLX software) have been used in order to understand the deformation mechanisms associated with this grain‐size evolution. The garnet grain‐size reduction trend has been summarized in a typological evolution (from Type I to Type IV). Type I, the original porphyroblasts, form cm‐sized elongated grains that crystallized upon multiple nucleation and coalescence following biotite breakdown: biotite + sillimanite + quartz = garnet + alkali feldspar + rutile + melt. These large garnet grains contain quartz ribbons and sillimanite inclusions. Type I garnet is sheared along preferential planes (sillimanite layers, quartz ribbons and/or suitably oriented garnet crystallographic planes) producing highly elongated Type II garnet grains marked by a single crystallographic orientation. Further deformation leads to the development of a crystallographic misorientation, subgrains and new grains resulting in Type III garnet. Associated grain‐size reduction occurs via subgrain rotation recrystallization accompanied by fast diffusion‐assisted dislocation glide. This plastic deformation of garnet is associated with efficient recovery as shown by the very low dislocation densities (1010 m?3 or lower). The rounded Type III garnet experiences rigid body rotation in fine‐grained matrix. In the highly deformed samples, the deformation mechanisms in garnet are grain‐size‐ and shape‐dependent: dislocation creep is dominant for the few large grains left (>1 mm; Type II garnet), rigid body rotation is typical for the smaller rounded grains (300 μm or less; Type III garnet) whereas diffusion creep may affect more elliptic garnet (Type IV garnet). The P–T conditions of garnet plasticity in the continental crust (≥950 °C; 11 kbar) have been identified using two‐feldspar thermometry and GASP conventional barometry. The garnet microstructural and deformation mechanisms evolution, coupled with grain‐size decrease in a fine‐grained steady‐state microstructure of quartz, alkali feldspar and plagioclase, suggests a separate mechanical evolution of garnet with respect to felsic minerals within the shear zone.  相似文献   
73.
Summary The seismic events occurring on 19 and 20 September 1985, whose epicentre was located in the coastal region of Michoacan, Mexico, produced tremendous damage in Mexico City. As a result of these losses the civil authorities of the city decided to study and evaluate the mechanical characteristics of the subsoil. To achieve this, it was necessary to drill several boreholes to obtain needed geophysical and geotechnical information. The geophysical method of electrical resistivity was the most appropriate to the research. This method enabled us to understand the structure and soil characteristics of the Mexican Valley.  相似文献   
74.
未来地震震级的定量计算   总被引:1,自引:0,他引:1  
将某一地震带在强震前某一时期内发生的地震,按其面波震级大小自大到小排列,并以N=2、3、4、……来累计频度,采用公式logN=a-bM计算a、b,从而计算出第一个地震的震级M_1,这就是未来可能发生地震的震级。通过对川滇地区和华北地区的九次近期强震进行计算,结果表明,在震级测定误差范围(±0.3级)内,上述的M和logN之间具有很好的线性关系,这就为地震预报和地震区划中定量计算未来地震震级提出了一个新的方法。  相似文献   
75.
采用金刚石压砧高压设备,对立方结构掺钕钇铝榴石多晶进行高温高压相变研究。实验分同时加温加压、独立加压、独立加温三类。对压力温度作用后相变产物进行了 X 射线衍射研究,对相变前后样品的配位数、晶体结构、晶胞参数、体积、密度进行了对比。  相似文献   
76.
A garnet population in Yellowknife schist, Canada   总被引:6,自引:0,他引:6  
Abstract Data are presented on a garnet population in a specimen of garnet-biotite-plagioclase-quartz schist from the cordierite zone of an Archaean thermal dome in the Southern Slave Province of the Canadian Shield. Garnet crystals are bounded by planar dodecahedral faces and by trapezohedral faces which on the 10-μm scale are corrugated. Crystal distribution, as revealed by dissection of a small cubic volume of rock, is random. The size distribution is normal, with a mean diameter of 0.81 mm and a standard deviation of 0.32 mm. In the largest crystal of the population (mean radius 0.83 mm), [Mn] = 100 Mn/(Fe + Mg + Mn + Ca) decreases from 14.5 at the centre to 7.5 and then increases in the outer margin to 8.5; [Fe] increases continuously from 67 at the centre to 77 at the surface; [Mg] increases from 12.5 to 13.5 and then falls sharply to 11; [Ca] remains unchanged at 4.0 and then drops to 3.3. Progressively smaller crystals have progressively lower [Mn] and higher [Fe] concentrations at their centres, while all crystals have the same margin composition. Growth vectors extending from given concentration contours to crystal surfaces are of equal length regardless of the size of the crystal in which the vector is located. A garnet-forming model is presented in which reaction was initiated by a rise in temperature. Nucleation sites were randomly selected. The nucleation rate increased with time and then declined. Crystal faces advanced at a constant linear rate, which implies an increase in volume proportional to surface area. Initially, the composition of garnet deposited on crystal surfaces was determined by van Laar equations of equilibrium, which demanded the withdrawal of Mn and Fe from within chlorite crystals. This transfer reaction was then accompanied by an ion exchange reaction which moved Mn and Fe to garnet surfaces from biotite, in exchange for Mg. The exchange reaction provides an explanation for the high overall concentration of Mn and Fe in garnet and for the observed Mn and Mg reversals in the margins of crystals. The increase of garnet volume in the garnet population is found to be parabolic, i.e. Vαα5.  相似文献   
77.
根据对殷庄矿地质、水文地质、开采条件与矿井涌水之间关系的研究,提出了煤矿开采水文地质条件预测分区的方法——多源信息方法。该方法借助于地理信息系统技术实现了矿井涌水因素间的有机处理。经过将模型与实际情况反复拟合,最终得出了分区预测模型。  相似文献   
78.
Eclogite facies mineral assemblages are variably preserved in mafic and ultramafic rocks within the Western Gneiss Region (WGR) of Norway. Mineralogical and microstructural data indicate that some Mg–Cr-rich, Alpine-type peridotites have had a complex metamorphic history. The metamorphic evolution of these rocks has been described in terms of a seven-stage evolutionary model; each stage is characterized by a specific mineral assemblage. Stages II and III both comprise garnet-bearing mineral assemblages. Garnet-bearing assemblages are also present in Fe–Ti-rich peridotites which commonly occur as layers in mafic complexes. Sm–Nd isotopic results are reported for mineral and whole rock samples from both of these types of peridotites and related rocks. The partitioning of Sm and Nd between coexisting garnet and clinopyroxene is used to assess chemical equilibrium. One sample of Mg–Cr-type peridotite shows non-disturbed partitioning of Sm and Nd between Stage II garnet and clinopyroxene pairs and yields a garnet–clinopyroxene–whole-rock date of 1703 ± 29 Ma (I= 0.51069, MSWD = 0.04). This is the best estimate for the age of the Stage II high-P assemblage. Other Stage II garnet–clinopyroxene pairs reflect later disturbance of the Sm–Nd system and yield dates in the range 1303 to 1040 Ma. These dates may not have any geological significance. Stage III garnet–clinopyroxene pairs typically have equilibrated Sm–Nd partitioning and two samples yield dates of 437 ± 58 and 511 ± 18 Ma. This suggests that equilibration of the Stage III high-P assemblage is related to the Caledonian orogeny and is more or less contemporaneous with high-P metamorphism of ‘country-rock’eclogites in the surrounding gneisses. The Sm–Nd mineral data for the Fe–Ti-rich garnet peridotites and for a superferrian eclogite, which occurs as a dyke within the Gurskebotn Mg–Cr-type peridotite, are consistent with a Palaeozoic high-P metamorphism. Finally a synoptic P–T–t path is proposed for the Mg–Cr-type peridotites which is consistent with the petrological and geochronological data.  相似文献   
79.
Abstract Finite difference models of Fe-Mg diffusion in garnet undergoing cooling from metamorphic peak conditions are used to infer the significance of temperatures calculated using garnet-biotite Fe-Mg exchange thermometry. For rocks cooled from high grades where the garnet was initially homogeneous, the calculated temperature (Tcalc) using garnet core and matrix biotite depends on the size of the garnet, the ratio of garnet to biotite in the rock (Vgarnet/Vbiotite) and the cooling rate. For garnets with radii of 1 mm and Vgarnet/Vbiotite<1, Tcalc is 633, 700 and 777°C for cooling rates of 1, 10 and 100°C/Ma. For Vgarnet/Vbiotite= 1 and 4 and a cooling rate of 10° C/Ma, Tcalc is approximately 660 and 610° C, respectively. Smaller and larger garnets have lower and higher Tcalc, respectively. These results suggest that peak metamorphic temperatures may be reliably attained from rocks crystallized at conditions below Tcalc of the garnet core, provided that Vgarnet/Vbiotite is sufficiently small (<0.1) and that the composition of the biotite at the metamorphic peak has not been altered during cooling. Numerical experiments on amphibolite facies garnets with nominal peak temperatures of 550–600° C generate a ‘well’in Fe/(Fe + Mg) near the rim during cooling. Maximum calculated temperatures for the assemblage garnet + chlorite + biotite + muscovite + plagioclase + quartz using the Fe/(Fe + Mg) at the bottom of the ‘well’with matrix biotite range from 23–43° C to 5–12° C below the peak metamorphic temperature for cooling rates of 1 and 100° C/Ma, respectively. Maximum calculated temperatures for the assemblage garnet + staurolite + biotite + muscovite + plagioclase + quartz are approximately 70° C below the peak metamorphic temperature and are not strongly dependent on cooling rate. The results of this study indicate that it may be very difficult to calculate peak metamorphic temperatures using garnet-biotite Fe-Mg exchange thermometry on amphibolite facies rocks (Tmax > 550° C) because the rim composition of the garnet, which is required to calculate the peak temperature, is that most easily destroyed by diffusion.  相似文献   
80.
重熔斑岩型锡多金属矿床地质特征及成矿模式   总被引:1,自引:0,他引:1  
张国林 《矿产与地质》1991,5(4):249-261
对重熔斑岩型锡多金属矿床成矿岩体的岩石类型、岩体形态、规模、岩石化学、微量元素和稀土元素地球化学、矿物包裹体和稳定同位素地球化学特征等方面进行了较系统的研究;并对该类矿床的矿化、蚀变分带特征和矿化与蚀变带的关系作了论述,指出了该类矿床最重要的蚀变带为黄玉云英岩化带, 在详细研究该类矿床的基础上,建立了重熔斑岩型锡多金属矿床的成矿模式.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号