首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10199篇
  免费   2049篇
  国内免费   2187篇
测绘学   382篇
大气科学   1311篇
地球物理   3377篇
地质学   5827篇
海洋学   1222篇
天文学   78篇
综合类   521篇
自然地理   1717篇
  2024年   68篇
  2023年   208篇
  2022年   339篇
  2021年   430篇
  2020年   443篇
  2019年   453篇
  2018年   409篇
  2017年   445篇
  2016年   411篇
  2015年   463篇
  2014年   625篇
  2013年   758篇
  2012年   577篇
  2011年   609篇
  2010年   555篇
  2009年   691篇
  2008年   707篇
  2007年   633篇
  2006年   688篇
  2005年   527篇
  2004年   509篇
  2003年   456篇
  2002年   418篇
  2001年   404篇
  2000年   348篇
  1999年   329篇
  1998年   312篇
  1997年   256篇
  1996年   246篇
  1995年   201篇
  1994年   170篇
  1993年   164篇
  1992年   139篇
  1991年   93篇
  1990年   93篇
  1989年   58篇
  1988年   60篇
  1987年   27篇
  1986年   24篇
  1985年   18篇
  1984年   12篇
  1983年   9篇
  1982年   7篇
  1981年   5篇
  1980年   10篇
  1978年   16篇
  1977年   5篇
  1976年   2篇
  1972年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Vegetation has a major influence on the water and energy balance of the earth's surface. In the last century, human activities have modified land use, inducing a consequent change in albedo and potential evapotranspiration. Linear vegetation structures (hedgerows, shelterbelts, open woodland, etc) were particularly abundant but have declined considerably over the past several decades. In this context, it is important to quantify their effect on water and energy balance both on a global scale (climate change and weather prediction) and on a local scale (soil column, hillslope and watershed). The main objective of this study was to quantify the effect of hedgerows on the water cycle by evaluating spatial and temporal variations of water balance components of a hillslope crossed by a hedgerow. Water flow simulation was performed using Hydrus‐2D to emphasize the importance of transpiration in the water balance and to evaluate water extraction from groundwater. Model validation was performed by comparing simulated and observed soil matrix potentials and groundwater levels. Hedgerow transpiration was calculated from sap flow measurements of four trees. Water balance components calculated with a one‐dimensional water balance equation were compared with simulations. Simulation runs with and without tree root uptake underlined the effect of hedgerow transpiration, increasing capillary rise and decreasing drainage. Results demonstrated that the spatial and temporal variability of water balance components was related to the hedgerow presence as well as to the meteorological context. The relations between transpiration, groundwater proximity and soil‐water availability determined the way in which water balance components were affected. Increased capillary rise and decreased drainage near hedges were related to the high transpiration of trees identified in this study. Transpiration reached twice the potential evapotranspiration when groundwater level and precipitation amounts were high. Water balance analysis showed that transpiration was a substantial component, representing 40% of total water output. These results may offer support for improving hydrological models by including the effect of land use and land cover on hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
P. Vidon  P. E. Cuadra 《水文研究》2010,24(13):1821-1833
Understanding the variables regulating tile‐flow response to precipitation in the US Midwest is critical for water quality management. This study (1) investigates the relationship between precipitation characteristics, antecedent water table depth and tile‐flow response at a high temporal resolution during storms; and (2) determines the relative importance of macropore flow versus matrix flow in tile flow in a tile‐drained soya bean field in Indiana. In spring, although variations in antecedent water table depth imparted some variation in tile‐flow response to precipitation, bulk precipitation was the best predictor of mean tile flow, maximum tile flow, time to peak, and run‐off ratio. The contribution of macropore flow to total flow significantly increased with precipitation amount, and macropore flow represented between 11 and 50% of total drain flow, with peak contributions between 15 and 74% of flow. For large storms (>6 cm bulk precipitation), cations data indicated a dilution of groundwater with new water as discharge peaked. Although no clear dilution or concentration patterns for Mg2+ or K+ were observed for smaller tile flow generating events (<3 cm bulk precipitation), macropore flow still contributed between 11 and 17% of the total flow for these moderate size storms. Inter‐drain comparison stressed the need to use triplicate or duplicate tile drain experiments when investigating tile drainage impact on water and N losses at the plot scale. These results significantly increase our understanding of the hydrological functioning of tile‐drained fields in spring, when most N losses to streams occur in the US Midwest. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
993.
Abstract

The objective of this study is to find the appropriate number and location of raingauges for a river basin for flow simulation by using statistical analyses and hydrological modelling. First, a statistical method is used to identify the appropriate number of raingauges. Herein the effect of the number of raingauges on the cross-correlation coefficient between areally averaged rainfall and discharge is investigated. Second, a lumped HBV model is used to investigate the effect of the number of raingauges on hydrological modelling performance. The Qingjiang River basin with 26 raingauges in China is used for a case study. The results show that both cross-correlation coefficient and modelling performance increase hyperbolically, and level off after five raingauges (therefore identified to be the appropriate number of rain-gauges) for this basin. The geographical locations of raingauges which give the best and worst hydrological modelling performance are identified, which shows that there is a strong dependence on the local geographical and climatic patterns.  相似文献   
994.
The low and high flow characteristic of the Blue Nile River (BNR) basin is presented. The study discusses low and high flow, flow duration curve (FDC) and trend analysis of the BNR and its major tributaries. Different probability density functions were fitted to better describe the low and high flows of the BNR and major tributaries in the basin. Wavelet analysis was used in understanding the variance and frequency‐time localization and detection of dominant oscillations in rainfall and flow. FDCs were developed, and low flow (below 50% exceedance) and high flow (over 75% exceedance) of the curves were analysed and compared. The Gravity Recovery and Climate Experiment (GRACE) satellite‐based maps of monthly changes in gravity converted to water equivalents from 2003 to 2006 for February, May and September showed an increase in the moisture influx in the BNR basin for the month of September, and loss of moisture in February and May. It was also shown that 2004 and 2005 were drier with less moisture influx compared to 2003 and 2006. On the basis of the Kolmogorov‐Smirnov, Anderson‐Darling and Chi‐square tests, Gen. Pareto, Frechet 3P, Log‐normal, Log‐logistics, Fatigue Life and Phased Bi‐Weibull distributions best describe the low and high flows within the BNR basin. This will be beneficial in developing flow hydrographs for similar ungauged watersheds within the BNR basin. The below 50% and above 75% exceedance on the FDC for five major rivers in addition to the BNR showed different characteristics depending on size, land cover, topography and other factors. The low flow frequency analysis of the BNR at Bahir Dar showed 0·55 m3/s as the monthly low flow with recurrence interval of 10 years. The wavelet analysis of the rainfall (at Bahir Dar and basin‐wide) and flows at three selected stations shows inter‐ and intra‐annual variability of rainfall and flows at various scales. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
995.
This paper is concerned with an example of quantitative modelling of orebody formation as a guide to reducing the risk for future mineral exploration. Specifically, the paper presents a detailed 3–D numerical model for the formation of the Century zinc deposit in northern Queensland. The model couples fluid flow with deformation, thermal transport and chemical reactions. The emphasis of the study is a systems approach where the holistic mineralising system is considered rather than concentrating solely on the mineral deposit. In so doing the complete plumbing system for mineralisation is considered with a view to specifying the critical conditions responsible for the ore deposit occurring where it does and having the size and metal grades that are observed. The numerical model is based on detailed geological, tectonic, isotopic and mineralogical data collected over the past 20 years. The conclusions are that the Century zinc deposit is located where it is because of the following factors: (i) a thermal anomaly is associated with the Termite Range Fault due to advection of heat from depth by fluid flow up the Termite Range Fault; (ii) bedding‐plane fissility in the shale rocks hosting the Century zinc deposit has controlled the wavelength and nature of D1 folding in the vicinity of the deposit and has also controlled increases in permeability due to hydrofracture of the shales; such hydrofracture is also associated with the production of hydrocarbons as these shales passed through the ‘oil‐window’; (iii) Pb–Zn leached from crustal rocks in the stratigraphic column migrated up along faults normal to the Termite Range Fault driven by topographic relief associated with inversion at the end of the Isan Orogeny; these fluids mixed with H2S derived at depth moving up the Termite Range Fault to mix with the crustal fluids to precipitate Pb–Zn in a plume downstream from the point of mixing. Critical factors to be used as exploration guides are high temperatures, carbonaceous fissile shales now folded into relatively tight D1 folds, fault‐controlled plumbing systems that enable fluid mixing, depletion of metals upstream of the deposit and,in particular,a very wide Fe‐depletion halo upstream of the deposit.  相似文献   
996.
This work addresses the linear dynamics underlying the formation of density interfaces at the periphery of energetic vortices, well outside the vortex core, both in the radial and axial directions. We compute numerically the unstable modes of an anticyclonic Gaussian vortex lens in a continuously stratified rotating fluid. The most unstable mode is a slow mode, associated with a critical layer instability located at the vortex periphery. Although the most unstable disturbance has a characteristic vertical scale which is comparable to the vortex height, interestingly, the critical levels of the successively fastest growing modes are closely spaced at intervals along the axial direction that are much smaller than the vortex height.  相似文献   
997.
Based on the theory of gravity‐driven groundwater flow systems, we have developed a complex Flow System Sand‐Box Model (FSM). It enables the visual observations of the development and characteristics and temporal evolution of complex Tóthian flow systems in the laboratory. The configuration of the regional, intermediate and local flow systems can be controlled and observed; hydraulic head, flow direction and travel time can be measured; and the scale and shape of the sub‐flow systems as well as the path lines and flow lines can be observed directly. The experiments demonstrate the Tóthian flow systems in a small basin with multiple sources and sinks. Greater local topographic (water table) undulation will lead to larger local flow systems. Greater regional and less local topographic undulation will enhance the development of intermediate and regional flow systems. In homogeneous media, increasing fluid‐potential differences between source and sink increase the spatial scale of the generated flow systems. The FSM is a useful teaching aid and experimental device to study and develop an intuitive insight into gravity‐driven groundwater flow systems. It helps to visualize and understand the hydraulic properties and controlling factors of Tóthian flow systems and may be used to study problems related to the chemical and temperature characteristics of the flow systems as well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
998.
Abstract

A numerical technique is presented whereby aquifer hydraulic diffusivities (D) and macrodispersivities (α) are calculated by linear equations rewritten from flow and solute transport differential equations. The approach requires a GIS to calculate spatial and temporal hydraulic head (h) and solute concentration gradients. The model is tested in Portugal, in a semi-confined aquifer periodically monitored for h and chloride/sulphate concentrations. Average D (0.46 m2/s) and α (1975 m) compare favourably with literature results. The relationship between α and scale (L) is also investigated. In this context, two aquifer groups could be identified: the first group is heterogeneous at the “macroscopic” scale (solute travelled distances <1 km), but homogeneous at the “megascopic” scale. The overall scale dependency in this case is given by an equation of logarithmic type. The second group is heterogeneous at the macroscopic and megascopic scales, with a scale dependency of linear type.

Citation Pacheco, F.A.L., 2013. Hydraulic diffusivity and macrodispersivity calculations embedded in a geographic information system. Hydrological Sciences Journal, 58 (4), 930–944.  相似文献   
999.
The model presented in the complementary document entitled, Reservoir rainfall‐runoff geomorphological model I: parameter application and analysis is analysed, calibrated and validated in this paper. The accuracy of simulated hydrographs is analysed by means of the efficiency defined by Nash and Sutcliffe. The sensitivity of the influence of five parameters on the behaviour of the model developed is analysed. Two different calibration and validation processes of Reservoir rainfall‐runoff geomorphological model are performed in Aixola watershed. Twelve events have been selected for calibrations and 25 for validations. With the first calibration and validation process, the model parameters are set by assigning the medians' values of the distributions obtained by means of the optimum results. The second process is performed by calibrating the most determinant parameter in the adjustment, which is the one that indicates the proportion of infiltrated water that is retained and does not flow; this is done with an empirical formulation depending on the event characteristics. Subsequently, the obtained results are validated. This last process has achieved very good adjustments in both calibrated and validated events. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
1000.
Abstract

Results of a study on change detection in hydrological time series of annual maximum river flow are presented. Out of more than a thousand long time series made available by the Global Runoff Data Centre (GRDC) in Koblenz, Germany, a worldwide data set consisting of 195 long series of daily mean flow records was selected, based on such criteria as length of series, currency, lack of gaps and missing values, adequate geographical distribution, and priority to smaller catchments. The analysis of annual maximum flows does not support the hypothesis of ubiquitous growth of high flows. Although 27 cases of strong, statistically significant increase were identified by the Mann-Kendall test, there are 31 decreases as well, and most (137) time series do not show any significant changes (at the 10% level). Caution is advised in interpreting these results as flooding is a complex phenomenon, caused by a number of factors that can be associated with local, regional, and hemispheric climatic processes. Moreover, river flow has strong natural variability and exhibits long-term persistence which can confound the results of trend and significance tests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号