全文获取类型
收费全文 | 170篇 |
免费 | 20篇 |
国内免费 | 67篇 |
专业分类
测绘学 | 4篇 |
地球物理 | 44篇 |
地质学 | 140篇 |
海洋学 | 9篇 |
综合类 | 6篇 |
自然地理 | 54篇 |
出版年
2024年 | 3篇 |
2023年 | 4篇 |
2022年 | 4篇 |
2021年 | 5篇 |
2020年 | 4篇 |
2019年 | 7篇 |
2018年 | 10篇 |
2017年 | 5篇 |
2016年 | 13篇 |
2015年 | 7篇 |
2014年 | 9篇 |
2013年 | 9篇 |
2012年 | 10篇 |
2011年 | 10篇 |
2010年 | 13篇 |
2009年 | 14篇 |
2008年 | 5篇 |
2007年 | 9篇 |
2006年 | 8篇 |
2005年 | 6篇 |
2004年 | 9篇 |
2003年 | 3篇 |
2002年 | 5篇 |
2001年 | 6篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 7篇 |
1997年 | 7篇 |
1996年 | 11篇 |
1995年 | 10篇 |
1994年 | 9篇 |
1993年 | 5篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 6篇 |
1989年 | 4篇 |
1988年 | 4篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有257条查询结果,搜索用时 15 毫秒
31.
Electrical anisotropy of young oceanic crust at mid-ocean ridges is detectable by observation of the rate and geometry of the diffusion of electromagnetic fields. The anisotropy in electrical properties arises from the presence of conductive seawater in an interconnected network of mostly ridge-parallel cracks. In this paper, we first justify the choice of a triaxial model to represent young oceanic crust, with three distinct electrical conductivities in the vertical, strike and spreading directions. We then present an algorithm to calculate the transient electromagnetic responses generated by an electric dipole source over such a triaxially anisotropic seafloor. We show that if the transient passages are measured with three distinct electric dipole-dipole configurations, it is possible to discern all three unknown conductivities independently of each other. 相似文献
32.
J. A. Hudson 《Geophysical Journal International》1990,102(2):485-490
33.
34.
35.
Yoshihiro Hiramatsu Masataka Ando Tameshige Tsukuda & Tooru Ooida 《Geophysical Journal International》1998,135(3):801-816
Shear-wave splitting from local deep earthquakes is investigated to clarify the volume and the location of two anisotropic bodies in the mantle wedge beneath central Honshu, Japan. We observe a spatial variation in splitting parameters depending on the combination of sources and receivers, nearly N–S fast in the northern region, nearly E–W fast in the southern region and small time delays in the eastern region. Using forward modelling, two models with 30 and 10 per cent anisotropy are tested by means of a global search for the locations of anisotropic bodies with various volumes. The optimum model is obtained for 30 per cent anisotropy, which means a 5 per cent velocity difference between fast and slow polarized waves. The northern anisotropic body has a volume of 1.00° (longitude) × 0.5° (latitude) × 75 km (depth), with the orientation of the symmetry axis being N20°E. The southern anisotropic body has a volume of 1.25° × 1.25° × 100 km with the symmetry axis along N95°E. Our results show that the anisotropic bodies are located in low-velocity and low- Q regions of the mantle. This, together with petrological data and the location of volcanoes in the arc, suggests that the possible cause of the anisotropy is the preferred alignment of cracks filled with melt. 相似文献
36.
IntroductionWhenpropagatingthroughananisotropicmedium,ashearwavesplitsintotwo(quasi)shearwaveswithdifferentpropagationspeedsandpolarizedorthogonally.Owingtotherecentdevel-opmentofseismicobservationsystem,detectionofshearwavessplittingwithverysmalldelaytimesbetweenfasterandslowershearwavesbecameavailableandprovidedpowerfulapproachfordetectionofcrustalanisotropy.Crampin(1978)emphasizedtheroleofalignedmicrocracksasacauseofcrustalanisotropyandpointedoutthatforverticallyalignedmicrocracksthedirecti… 相似文献
37.
在岩石板上切割出多条切缝并以石膏填充,将其分为3个构造特征区:A区(断层交汇区)、B区(左行左列岩桥区)、C区(右行左列岩桥区)。采用双轴加压、定点应变、声发射信息系统和实时全息干涉计量方法(激光)进行观测研究。结果表明:在岩样破坏孕育过程中,各个特征区都出现了特大破裂。每个特大破裂发生前定点应变、激光干涉条纹图(应变场)和声发射信息都出现了特征变化。特大破裂的发生有先后,其前兆特征的出现也有先后,并且各区有各自的特点,某些前兆还可能在各区之间交替出现。研究认为,三个区的断层结构性质不同,这就导致了不同的破裂顺序,甚至产生不同的前兆现象。 相似文献
38.
裂缝信息对于低渗透储层的勘探开发具有重要意义。本文在深入探讨利用古地磁方法进行岩心裂缝重定向原理的基础上,详细介绍了岩心裂缝重定向的工作方法。针对垂直及平行于岩心中心轴的两种样品加工方式,推导出可直接利用退磁结果表达的裂缝方向的公式,并将这一结果应用于鄂尔多斯盆地一口有裂缝井的岩心,取得较好的应用效果。研究结果表明,利用古地磁方法进行岩心裂缝重定向具有操作简便、成本较低、且精度相对较高的特点。本文研究结果对于鄂尔多斯盆地的裂缝系统研究具有参考意义。 相似文献
39.
Morphological characteristics of the earthquake surface ruptures on Awaji Island, associated with the 1995 Southern Hyogo Prefecture Earthquake 总被引:1,自引:0,他引:1
Abstract The earthquake surface ruptures on the northern side of Awaji Island accompanying the 1995 Southern Hyogo Prefecture Earthquake in Japan consist of three earthquake surface rupture zones called the Nojima, Matsuho, and Kusumoto Earthquake Surface Rupture Zones. The Nojima Earthquake Surface Rupture Zone is - 18 km long and was formed from Awaji-cho at the northern end of Awaji Island to Ichinomiya-cho. It occurred along the pre-existing Nojima geological fault in the northern segment and as a new fault in the southern segment. The northern segment of the Nojima Earthquake Surface Rupture Zone is composed of some subparallel shear faults showing a right-step en echelon form and many extensional cracks showing a left-step en echelon form. The southern segment consists of some discontinuous surface ruptures which are concentrated in a narrow zone a few tens of meters in width. This surface rupture zone shows a general trend striking north 30°-60° east, and dipping 75°-85° east. The deformational topographies and striations on the fault plane generated during the co-seismic displacement show that the Nojima Earthquake Surface Rupture Zone is a right-lateral strike-slip fault with some reverse component. Displacements measured at many of the outcrops are generally 100-200 em horizontally and 50-100 em vertically in the northern segment and a few em to 20 em both horizontally and vertically in the southern segment. The largest displacements are 180 em horizontally, 130 em vertically, and 215 em in netslip measured at the Hirabayashi fault scarp. The Matsuho Earthquake Surface Rupture Zone striking north 40°-60° west was also found along the coastline trending northwest-southeast in Awaji-cho for ~1 km at the northern end of Awaji Island. The Kusumoto Earthquake Surface Rupture Zone occurred along the pre-existing Kusumoto geological fault for ~ 1.5 km near the northeastern coastline, generally striking north 35°-60° east, dipping 60°-70° west. From the morphological and geomorphological characteristics, the Nojima Earthquake Surface Rupture Zone can be divided into four segments which form a right-step en echelon formation. The geological and geomorphological evidence and the aftershock epicenter distributions show clearly that the distributions and geometry of these four segments are controlled by the pre-existing geological structures. 相似文献
40.