首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5974篇
  免费   1066篇
  国内免费   1420篇
测绘学   284篇
大气科学   843篇
地球物理   1548篇
地质学   3989篇
海洋学   537篇
天文学   56篇
综合类   340篇
自然地理   863篇
  2024年   29篇
  2023年   96篇
  2022年   200篇
  2021年   222篇
  2020年   247篇
  2019年   274篇
  2018年   257篇
  2017年   241篇
  2016年   313篇
  2015年   274篇
  2014年   369篇
  2013年   410篇
  2012年   387篇
  2011年   415篇
  2010年   373篇
  2009年   432篇
  2008年   466篇
  2007年   460篇
  2006年   500篇
  2005年   346篇
  2004年   336篇
  2003年   292篇
  2002年   197篇
  2001年   172篇
  2000年   172篇
  1999年   164篇
  1998年   134篇
  1997年   109篇
  1996年   129篇
  1995年   87篇
  1994年   80篇
  1993年   71篇
  1992年   66篇
  1991年   30篇
  1990年   25篇
  1989年   28篇
  1988年   20篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1954年   2篇
排序方式: 共有8460条查询结果,搜索用时 15 毫秒
61.
自上个世纪70年代初出现局域网,局域网已普及到国民经济的各个部门,也同样成为测绘行业各类数字测绘产品的生产服务平台.如何搞好局域网的内部管理,确保网络安全运行,成为一个亟待解决的课题.根据多年来网络管理的亲身经历,本人认为事故大多都间接地来自于内部安全管理上的疏忽和漏洞.  相似文献   
62.
基于蒙特卡罗法的多级黄土滑坡可靠性分析   总被引:2,自引:1,他引:1  
滑坡稳定性分析目前工程中一般采用极限平衡算法。为了确定滑坡的稳定性系数,在计算过程中要将岩土体、计算模型简化,忽略一些影响滑坡稳定的次要因素,把影响滑坡稳定的各种主要因素作为确定参数。由于滑坡岩土体本身的非均质性及其参数确定具有随机性和变异性,用唯一的稳定系数不能客观地反映整个滑坡的真实安全程度。以陕西省夏呀河滑坡为例,通过野外详细调查、工程勘探和室内土工试验,初步确定该滑坡存在四级滑动面,难以用简单的单一滑动面计算其稳定性。因此,先采用推力传递系数法对滑坡体上的四级滑坡分别进行滑坡稳定性计算,得到该滑坡体上的四级滑坡稳定系数。再采用蒙特卡罗法对该四级滑坡进行可靠性分析,得到其可靠度,定量地表达夏呀河四级滑坡的安全程度。同时对比分析夏呀河四级滑坡的稳定系数和失稳概率,综合评价该滑坡体上的四级滑坡的稳定性及其风险概率,为滑坡的工程治理及预测预警、灾害危险性评价提供依据。  相似文献   
63.
运用强度参数的改变对边坡破坏面形迹影响不明显这一特点,在数值模拟过程中通过改变岩体强度参数,有效地获取潜在滑动面的位置和形态,较好地解决了滑动面搜索的难题。将该法应用于广州科学城某人工高边坡稳定性的研究,在三维数值模拟过程中,将强度参数大幅度折减,计算后获得各剖面的剪应变增量图,从这些图中可获得潜在滑动面。这与人们通常将此类边坡的中风化面作为滑动面存在较大差别。将该滑动面运用极限平衡法进行计算,计算结果显示各剖面的安全系数基本都大于1.2,边坡稳定但仍需要加固处理,与三维数值模拟结果相一致。由此认为用这种分析法确定出的潜在滑动面合理、计算结果可靠,可作为搜索边坡潜在滑动面并计算安全系数的方法之一。  相似文献   
64.
焦作-郑州天然气输气管道是较重要建设项目,输气管道起自焦作市博爱县磨头镇,南止郑州市惠济区古荥镇,该输气管道沿线地质环境条件复杂程度为简单-中等。地质灾害类型主要为崩塌、地裂缝、地面不均匀沉陷,黄土湿陷和沙土液化等地质灾害。工程建设有引发和加剧崩塌灾害的可能性,有遭受地质灾害的危险性。工程建设过程中应针对不同的灾害类型采取适当的预防或治理措施。  相似文献   
65.
Singular physical or chemical processes may result in anomalous amounts of energy release or mass accumulation that, generally, are confined to narrow intervals in space or time. Singularity is a property of different types of non-linear natural processes including cloud formation, rainfall, hurricanes, flooding, landslides, earthquakes, wildfires, and mineralization. The end products of these non-linear processes can be modeled as fractals or multifractals. Hydrothermal processes in the Earth’s crust can result in ore deposits characterized by high concentrations of metals with fractal or multifractal properties. Here we show that the non-linear properties of the end products of singular mineralization processes can be applied for prediction of undiscovered mineral deposits and for quantitative mineral resource assessment, whether for mineral exploration or for regional, national and global planning for mineral resource utilization. In addition to the general theory and framework for the non-linear mineral resources assessment, this paper focuses on several power-law models proposed for characterizing non-linear properties of mineralization and for geoinformation extraction and integration. The theories, methods, and computer system discussed in this paper were validated using a case study dealing with hydrothermal Au mineral potential in southern Nova Scotia, Canada.  相似文献   
66.
The dynamics and thermodynamics of large ash flows   总被引:6,自引:6,他引:0  
 Ash flow deposits, containing up to 1000 km3 of material, have been produced by some of the largest volcanic eruptions known. Ash flows propagate several tens of kilometres from their source vents, produce extensive blankets of ash and are able to surmount topographic barriers hundreds of metres high. We present and test a new model of the motion of such flows as they propagate over a near horizontal surface from a collapsing fountain above a volcanic vent. The model predicts that for a given eruption rate, either a slow (10–100 m/s) and deep (1000–3000 m) subcritical flow or a fast (100–200 m/s) and shallow (500–1000 m) supercritical flow may develop. Subcritical ash flows propagate with a nearly constant volume flux, whereas supercritical flows entrain air and become progressively more voluminous. The run-out distance of such ash flows is controlled largely by the mass of air mixed into the collapsing fountain, the degree of fragmentation and the associated rate of loss of material into an underlying concentrated depositional system, and the mass eruption rate. However, in supercritical flows, the continued entrainment of air exerts a further important control on the flow evolution. Model predictions show that the run-out distance decreases with the mass of air entrained into the flow. Also, the mass of ash which may ascend from the flow into a buoyant coignimbrite cloud increases as more air is entrained into the flow. As a result, supercritical ash flows typically have shorter runout distances and more ash is elutriated into the associated coignimbrite eruption columns. We also show that one-dimensional, channellized ash flows typically propagate further than their radially spreading counterparts. As a Plinian eruption proceeds, the erupted mass flux often increases, leading to column collapse and the formation of pumiceous ash flows. Near the critical conditions for eruption column collapse, the flows are shed from high fountains which entrain large quantities of air per unit mass. Our model suggests that this will lead to relatively short ash flows with much of the erupted material being elutriated into the coignimbrite column. However, if the mass flux subseqently increases, then less air per unit mass is entrained into the collapsing fountain, and progressively larger flows, which propagate further from the vent, will develop. Our model is consistent with observations of a number of pyroclastic flow deposits, including the 1912 eruption of Katmai and the 1991 eruption of Pinatubo. The model suggests that many extensive flow sheets were emplaced from eruptions with mass fluxes of 109–1010 kg/s over periods of 103–105 s, and that some indicators of flow "mobility" may need to be reinterpreted. Furthermore, in accordance with observations, the model predicts that the coignimbrite eruption columns produced from such ash flows rose between 20 and 40 km. Received: 25 August 1995 / Accepted: 3 April 1996  相似文献   
67.
Seismic hazard analysis is based on data and models, which both are imprecise and uncertain. Especially the interpretation of historical information into earthquake parameters, e.g. earthquake size and location, yields ambiguous and imprecise data. Models based on probability distributions have been developed in order to quantify and represent these uncertainties. Nevertheless, the majority of the procedures applied in seismic hazard assessment do not take into account these uncertainties, nor do they show the variance of the results. Therefore, a procedure based on Bayesian statistics was developed to estimate return periods for different ground motion intensities (MSK scale).Bayesian techniques provide a mathematical model to estimate the distribution of random variables in presence of uncertainties. The developed method estimates the probability distribution of the number of occurrences in a Poisson process described by the parameter . The input data are the historical occurrences of intensities for a particular site, represented by a discrete probability distribution for each earthquake. The calculation of these historical occurrences requires a careful preparation of all input parameters, i.e. a modelling of their uncertainties. The obtained results show that the variance of the recurrence rate is smaller in regions with higher seismic activity than in less active regions. It can also be demonstrated that long return periods cannot be estimated with confidence, because the time period of observation is too short. This indicates that the long return periods obtained by seismic source methods only reflects the delineated seismic sources and the chosen earthquake size distribution law.  相似文献   
68.
The tbough one year cormsion potential and polarisation resistanoc for 3 kinds of stals in seabottomedment of Liaodong Bay were measured with the “MD” method.The measurements wiIl have some thoretical and pndital talues. The thooretical valoc lies in thatthe reoorded changing process of the practital corrosion case can be basis for indoor discussion andeectrochemical on the corrosion practical value lies in that the obtained datu canbe basis for designing and controlling elatrochemical protation syttems. In fact, it is very difficult tomeasure in situ the cornosion parnders of steeIs in sea sediment.  相似文献   
69.
Seismic hazard of Egypt   总被引:1,自引:0,他引:1  
Earthquake hazard parameters such as maximum expected magnitude,M max, annual activity rate,, andb value of the Gutenberg-Richter relation have been evaluated for two regions of Egypt. The applied maximum likelihood method permits the combination of both historical and instrumental data. The catalogue used covers earthquakes with magnitude 3 from the time interval 320–1987. The uncertainties in magnitude estimates and threshold of completeness were taken into account. The hazard parameter determination is performed for two study areas. The first area, Gulf of Suez, has higher seismicity level than the second, all other active zones in Egypt.b-values of 1.2 ± 0.1 and 1.0 ± 0.1 are obtained for the two areas, respectively. The number of annually expected earthquakes with magnitude 3 is much larger in the Gulf of Suez, 39 ± 2 than in the other areas, 6.1 ± 0.5. The maximum expected magnitude is calculated to be 6.5 ± 0.4 for a time span of 209 years for the Gulf of Suez and 6.1 ± 0.3 for a time span of 1667 years for the remaining active areas in Egypt. Respective periods of 10 and 20 years were reported for earthquakes of magnitude 5.0 for the two subareas.  相似文献   
70.
In this paper analytical expressions are derived for the temporal variations ofJ 2 andJ 22 due to the tides of the solid Earth, taking into account only the deformation of the mantle, and employing a procedure already used by the authors in their Hamiltonian theory of the Earth's rotation, which obtain the necessary parameters in a direct way by integration of those provided by a selected model of Earth interior.Numerical tables giving the periodic variation of coefficients are given, as well as a new prediction for UT1. For J 2 and J 22 the amplitudes reach such a magnitude that both two variations should not be ignored in studies involving the analysis of highly precise satellite tracking data. Moreover, the possibility of improving our knowledge of the value of those harmonic coefficients in only a more exact digit appears as to be strongly dependent on the limitations in the theoretical modeling of the variations of the inertia tensor due to solid tides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号