首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   652篇
  免费   102篇
  国内免费   255篇
测绘学   41篇
大气科学   19篇
地球物理   78篇
地质学   713篇
海洋学   57篇
天文学   2篇
综合类   27篇
自然地理   72篇
  2024年   6篇
  2023年   20篇
  2022年   22篇
  2021年   25篇
  2020年   26篇
  2019年   38篇
  2018年   33篇
  2017年   30篇
  2016年   30篇
  2015年   31篇
  2014年   47篇
  2013年   60篇
  2012年   38篇
  2011年   32篇
  2010年   52篇
  2009年   37篇
  2008年   39篇
  2007年   38篇
  2006年   50篇
  2005年   40篇
  2004年   38篇
  2003年   41篇
  2002年   36篇
  2001年   19篇
  2000年   24篇
  1999年   28篇
  1998年   22篇
  1997年   30篇
  1996年   19篇
  1995年   9篇
  1994年   15篇
  1993年   7篇
  1992年   10篇
  1991年   3篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
排序方式: 共有1009条查询结果,搜索用时 62 毫秒
11.
介绍了伸展构造概念与研究现状,沙麦地区中—新生代伸展构造基本特征与形成机制。认为区内中—新生代盆地是地壳呈北西西—南东东向伸展的结果,地壳的伸展演化并不连续,呈现幕式伸展的特点。  相似文献   
12.
In central Tunisia, a synsedimentary tectonic episode has been pointed out through the tectonic movements affecting the Late Palaeocene–Early Eocene successions. This tectonic episode has controlled, to a large extent, the palaeogeographic setting of the area during that period and confirmed the important effect induced by the Pyrenean shortening phase on the edge of the African plate, which obviously has witnessed a common history with the southern part of the European plate. To cite this article: A. El Ghali et al., C. R. Geoscience 335 (2003).  相似文献   
13.
The Gondwana successions (1–4 km thick) of peninsular India accumulated in a number of discrete basins during Permo-Triassic period. The basins are typically bounded by faults that developed along Precambrian lineaments during deposition, as well as affected by intrabasinal faults indicating fault-controlled synsedimentary subsidence. The patterns of the intrabasinal faults and their relationships with the respective basin-bounding faults represent both extensional and strike-slip regimes. Field evidence suggests that preferential subsidence in locales of differently oriented discontinuities in the Precambrian basement led to development of Gondwana basins with varying, but mutually compatible, kinematics during a bulk motion, grossly along the present-day E–W direction. The kinematic disparity of the individual basins resulted due to different relative orientations of the basement discontinuities and is illustrated with the help of a simple sandbox model. The regional E–W motion was accommodated by strike-slip motion on the transcontinental fault in the north.  相似文献   
14.
湖南煌斑岩以富集大离子亲石元素和轻稀土元素,而亏损高强场元素(Nb-Ta-Ti)为特征,同位素以高^87Sr/^86Sr、低^143Nd/^144Nd为特征。源区可能为早期俯冲交代的古老岩石圈富集地幔。煌斑岩的侵入是软流圈上涌的结果,表明湖南地区于晚三叠世已从岩石圈的挤压阶段开始向岩石圈伸展-减薄阶段转换。  相似文献   
15.
西藏聂拉木高喜马拉雅结晶岩系在区域上以单一的叶理和单一的拉伸线理占主要地位,其变形带的组构主要反映了透入性的伸展变形;根据显微构造分析表明早期由北往南推覆,晚期由南向北伸展,且晚期表现非常明显。  相似文献   
16.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   
17.
This article presents various tests using a cyclic triaxial instrument, on samples of saturated Hostun RF sand, reinforced with circular sheets of geosynthetic material. Tests performed with different types of geosynthetics of different compressibility, rigidity and roughness characteristics indicate a significant increase in liquefaction resistance for samples reinforced with compressible, non-woven geotextiles. The undrained behaviour of saturated Hostun RF sand reinforced with non-woven geotextiles is analysed on the basis of different test series. This analysis highlights the influence of reinforcement compressibility on interstitial pressure distribution in the sample, thus showing the role of this type of inclusion in the increase in liquefaction resistance.  相似文献   
18.
辽西医巫闾山地区中生代两期韧性变形的研究   总被引:3,自引:0,他引:3  
医巫闾山地区的韧性剪切构造是中生代两期韧性变形作用的产物。早期韧性变形中a线理发育,线理走向和糜棱面理走向基本一致,线理在xy面上的侧伏角绝大多数<30°;该期韧性变形是以左行走滑运动为主。晚期韧性变形中a线理发育,线理倾伏向和糜棱岩中糜棱面理倾向相近,线理在xy面上侧伏角主要在45°~90°之间;该期韧性变形是伸展作用的产物。医巫闾山中生代两期韧性剪切变形作用表明,在侏罗纪至早白垩世期间辽西地区不仅发生了强烈挤压推覆作用和伸展作用,也发生了大规模左行走滑作用。该韧性变形作用的发现对进一步研究辽西中生代的构造演化序列、期次和构造格架转换等问题有重要意义。  相似文献   
19.
The structure of the mid-Norwegian volcanic Vøring margin at the onset of the Maastrichtian–Paleocene extension phase reflects the cumulative effect of earlier consecutive rifting events. Lateral structural differences present on the margin at that time are a consequence of migration of the location of maximum extension in time between Norway and Greenland. The most important imprints (Moho depth, thermal structure) of these events on the lithosphere are incorporated in a numerical simulation of the final extension phase. We focus on a possible mechanism of formation of the Vøring Marginal High and address the relationship between spatial and temporal evolution of crustal thinning and thickening, uplift of the surface and strength of the lithosphere.It is found that the Vøring Basin formed the strongest part of the margin which explains why the Maastrichtian–Paleocene rift axis was not located here but instead jumped westward with respect to the earlier rift axes locations. The modeling study predicts that local crustal thickening during extension can be expected when large lateral thermal variations are present in the lithosphere at the onset of extension. Negative buoyancy induced by lateral temperature differences increases downwelling adjacent to the rifting zone; convergence of material at the particular part of the margin is mainly taken up by the lower crust. The model shows that during the final phase of extension, the crust in the Vøring Marginal High area was thickened and the surface uplifted. It is likely that this dynamic process and the effects of magmatic intrusions both acted in concert to form the Marginal High.  相似文献   
20.
We have developed a significant body of new field-based evidence relating to the history of crustal extension in western Turkey. We establish that two of the NE–SW-trending basins in this region, the Gördes and Selendi Basins, whose sedimentary successions begin in the early Miocene, are unlikely to relate to late-stage Alpine compressional orogeny or to E–W extension of Tibetan-type grabens as previously suggested. We argue instead that these basins are the result of earlier (?) late Oligocene, low-angle normal faulting that created approximately N–S “scoop-shaped” depressions in which clastic to lacustine and later tuffaceous sediments accumulated during early–mid-Miocene time, separated by elongate structural highs. These basins were later cut by E–W-trending (?) Plio–Quaternary normal faults that post-date accumulation of the Neogene deposits. In addition, we interpret the Alaşehir (Gediz) Graben in terms of two phases of extension, an early phase lasting from the early Miocene to the (?) late Miocene and a young Plio–Quaternary phase that is still active. Taking into account our inferred earlier phase of regional extension, we thus propose a new three-phase “pulsed extension” model for western Turkey. We relate the first two phases to “roll-back” of the south Aegean subduction zone and the third phase to the westward “tectonic escape” of Anatolia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号