首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2389篇
  免费   421篇
  国内免费   985篇
测绘学   10篇
大气科学   15篇
地球物理   373篇
地质学   2793篇
海洋学   380篇
天文学   8篇
综合类   78篇
自然地理   138篇
  2024年   9篇
  2023年   35篇
  2022年   73篇
  2021年   68篇
  2020年   119篇
  2019年   136篇
  2018年   126篇
  2017年   96篇
  2016年   156篇
  2015年   136篇
  2014年   146篇
  2013年   221篇
  2012年   138篇
  2011年   181篇
  2010年   144篇
  2009年   165篇
  2008年   186篇
  2007年   200篇
  2006年   178篇
  2005年   184篇
  2004年   145篇
  2003年   127篇
  2002年   114篇
  2001年   122篇
  2000年   105篇
  1999年   93篇
  1998年   68篇
  1997年   50篇
  1996年   44篇
  1995年   36篇
  1994年   38篇
  1993年   32篇
  1992年   24篇
  1991年   19篇
  1990年   19篇
  1989年   14篇
  1988年   9篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1978年   2篇
  1973年   1篇
排序方式: 共有3795条查询结果,搜索用时 46 毫秒
91.
青海省新型功能材料研究和产业的分析(续完)   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了部分新型功能材料的前沿领域发展情况;通过对青海省在能源、矿产资源方面的优势及青海省可持续发展能力的分析,对我省目前及未来可以发展的新型功能材料产业提出了意见和建议。  相似文献   
92.
This article is an attempt at providing an insight into the development of hypoplasticity (including barodesy, which is a recent development of hypoplasticity) as a theory elaborated since 1977, when the first version was published by the first author, until present. The multiplicity of the many versions published since then is hard to overlook. This article presents a review and insight into the evolution of a theory and the struggle to formulate a satisfactory constitutive law. Among the many proposed versions, we focus on those ones that can be seen as changes of paradigm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
93.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
94.
We propose a discrete element model for brittle rupture. The material consists of a bidimensional set of closed‐packed particles in contact. We explore the isotropic elastic behavior of this regular structure to derive a rupture criterion compatible to continuum mechanics. We introduce a classical criterion of mixed mode crack propagation based on the value of the stress intensity factors, obtained by the analysis of two adjacent contacts near a crack tip. Hence, the toughness becomes a direct parameter of the model, without any calibration procedure. We verify the consistency of the formulation as well as its convergence by comparison with theoretical solutions of tensile cracks, a pre‐cracked beam, and an inclined crack under biaxial stress. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
95.
Stiffened deep mixed (SDM) column is a new ground improvement technique to improve soft soil, which can be used to increase bearing capacity, reduce deformation, and enhance stability of soft soil. This technique has been successfully adopted to support the highway and railway embankments over soft soils in China and other countries. However, there have been limited investigations on its consolidation under embankment loading. This paper developed an analytical solution for the consolidation of embankment over soft soil with SDM column in which core pile is equal to or shorter than outer DM column. The consolidation problem was simplified as a consolidation of composite soil considering the load shear effect of core pile. The developed solution was verified by a comparison with the results computed by three-dimensional (3-D) finite element analysis. A parametric study based on the derived solution was conducted to investigate influence factors—length of core pile, diameter of core pile, diameter of SDM column, modulus of DM column, and permeability coefficient of DM column—on the consolidation behavior of SDM column-supported embankment over soft soil. The developed solution was applied to a case history of SDM column-supported embankment, and a good agreement was found between the predictions and the field measurements.  相似文献   
96.
The present study investigates propagation of a cohesive crack in non‐isothermal unsaturated porous medium under mode I conditions. Basic points of skeleton deformation, moisture, and heat transfer for unsaturated porous medium are presented. Boundary conditions on the crack surface that consist of mechanical interaction of the crack and the porous medium, water, and heat flows through the crack are taken into consideration. For spatial discretization, the extended finite element method is used. This method uses enriched shape functions in addition to ordinary shape functions for approximation of displacement, pressure, and temperature fields. The Heaviside step function and the distance function are exploited as enrichment functions for representing the crack surfaces displacement and the discontinuous vertical gradients of the pressure and temperature fields along the crack, respectively. For temporal discretization, backward finite difference scheme is applied. Problems solved from the literature show the validity of the model as well as the dependency of structural response on the material properties and loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
97.
西宝山耐火黏土矿为沉积型矿床,目前揭露1个耐火黏土矿矿层,赋存于石盒子群万山组底部“B”层黏土岩的下部,厚度较稳定,勘查开发潜力较大。通过对其地质特征、矿层特征、矿石结构构造及矿床成因分析,提出了找矿方向。认为该耐火黏土矿受沉积地层控制,呈层状分布,分布较稳定。依据该区地层产出情况,在青龙山断裂与禹王山断裂之间及两侧均具有良好的找矿前景,这为下一步找矿工作奠定了基础。  相似文献   
98.
We investigate the elastic behavior of weakly cemented contact. We show that the radial distribution of stresses and the stiffnesses of a cemented contact are governed by the ratio a/RΛ, where R, a, and Λ are, respectively, the grain radius, the contact size, and the ratio of the elastic moduli of cement and grains. Moreover, we show that a cemented contact is always less stiff than a Hertzian contact having a similar size. Finally, we propose accurate approximate expressions of the contact stiffnesses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
99.
This paper studies the chemo‐mechanics of cemented granular solids in the context of continuum thermodynamics for fluid‐saturated porous media. For this purpose, an existing constitutive model formulated in the frame of the Breakage Mechanics theory is augmented to cope with reactive processes. Chemical state variables accounting for the reactions between the solid constituents and the solutes in the pore fluid are introduced to enrich the interactions among the microstructural units simulated by the model (i.e., grains and cement bonds). Two different reactive processes are studied (i.e., grain dissolution and cement precipitation), using the chemical variables to describe the progression of the reactions and track changes in the size of grains and bonds. Finally, a homogenization strategy is used to derive the energy potentials of the solid mixture, adopting probability density functions that depend on both mechanical and chemical indices. It is shown that the connection between the statistics of the micro‐scale attributes and the continuum properties of the solid enables the mathematical capture of numerous mechanical effects of lithification and chemical deterioration, such as changes in stiffness, expansion/contraction of the elastic domain, and development of inelastic strains during reaction. In particular, the model offers an interpretation of the plastic strains generated by aggressive environments, which are here interpreted as an outcome of chemically driven debonding and comminution. As a result, the model explains widely observed macroscopic signatures of geomaterial degradation by reconciling the energetics of the deformation/reaction processes with the evolving geometry of the microstructural attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
100.
The effective stress concept for solid‐fluid 2‐phase media was revisited in this work. In particular, the effects of the compressibility of both the pore fluid and the soil particles were studied under 3 different conditions, i.e., undrained, drained, and unjacketed conditions based on a Biot‐type theory for 2‐phase porous media. It was confirmed that Terzaghi effective stress holds at the moment when soil grains are assumed to be incompressible and when the compressibility of the pore fluid is small enough compared to that of the soil skeleton. Then, isotropic compression tests for dry sand under undrained conditions were conducted within the triaxial apparatus in which the changes in the pore air pressure could be measured. The ratio of the increment in the cell pressure to the increment in the pore air pressure, m, corresponds to the inverse of the B value by Bishop and was obtained during the step loading of the cell pressure. In addition, the m values were evaluated by comparing them with theoretically obtained values based on the solid‐fluid 2‐phase mixture theory. The experimental m values were close to the theoretical values, as they were in the range of approximately 40 to 185, depending on the cell pressure. Finally, it was found that the soil material with a highly compressible pore fluid, such as air, must be analyzed with the multi‐phase porous mixture theory. However, Terzaghi effective stress is practically applicable when the compressibilities of both the soil particles and the pore fluid are small enough compared to that of the soil skeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号