首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3485篇
  免费   850篇
  国内免费   1782篇
测绘学   43篇
大气科学   273篇
地球物理   831篇
地质学   3919篇
海洋学   657篇
天文学   45篇
综合类   173篇
自然地理   176篇
  2024年   13篇
  2023年   70篇
  2022年   128篇
  2021年   122篇
  2020年   186篇
  2019年   202篇
  2018年   194篇
  2017年   162篇
  2016年   200篇
  2015年   226篇
  2014年   278篇
  2013年   311篇
  2012年   278篇
  2011年   307篇
  2010年   248篇
  2009年   281篇
  2008年   271篇
  2007年   304篇
  2006年   312篇
  2005年   252篇
  2004年   234篇
  2003年   229篇
  2002年   172篇
  2001年   167篇
  2000年   156篇
  1999年   129篇
  1998年   129篇
  1997年   96篇
  1996年   97篇
  1995年   78篇
  1994年   76篇
  1993年   51篇
  1992年   34篇
  1991年   26篇
  1990年   26篇
  1989年   13篇
  1988年   14篇
  1987年   9篇
  1986年   9篇
  1985年   6篇
  1984年   11篇
  1983年   3篇
  1982年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1954年   2篇
排序方式: 共有6117条查询结果,搜索用时 31 毫秒
971.
史红  姜福兴  李连祥 《岩土力学》2006,27(Z1):266-269
针对多个综放采场出现的支架立柱压爆、油缸变形等异常矿压显现,通过对综放采场上覆岩层的运动范围及运动特点、顶板结构动态稳定性的分析,探讨了综放工作面异常压力产生的机理。得出了顶板结构局部铰接失稳(滑落失稳)是造成异常压力主要原因的结论。由于滑落失稳的原因不同,可分为水浸蚀型、地质构造型和顶板失稳型。通过对综放采场支架作用力的分析,给出了计算异常压力的公式。利用顶板结构动态稳定性判断准则,可对异常压力的类型进行判别,从而进一步确定异常压力的计算方法,为采场支架选型和现场控制异常压力提供理论依据。  相似文献   
972.
龙潭隧道是沪-蓉高速公路工程的控制性工程。地质条件复杂,集浅埋、偏压、涌水、涌泥、岩爆等地质问题于一身,是典型的复杂条件下的长大公路隧道。隧道洞口段处在浅埋偏压段时,施工难度相当大。从隧道开挖与支护的安全性出发,论述了浅埋偏压隧道的设计与施工情况。以右线出洞口为例,采用三维快速拉格朗日差分法(FLAC3D),对其施工开挖过程及支护进行了模拟。通过对开挖支护后围岩的应力场、位移场及塑性区特征的分析,得出了一些建设性的结论,对工程的施工具有指导意义。  相似文献   
973.
王飞  仇文革  高新强 《岩土力学》2006,27(Z1):189-192
工程上将满足一定条件下的黏土层介质视为隔水层。通过模型试验的方法,对黏土层为不透水层的确定方法以及黏土层内部的水压力分布规律进行了研究。通过试验分析得出了某给定黏土层为隔水层的特定条件:即找出了黏土层的厚度、渗透系数及层上水头高度三者的关系和给定黏土层的起始水力坡降,得到了黏土层内已渗透水部分的水压力分布规律。试验结果对工程实际具有一定的指导作用。  相似文献   
974.
房建果  孙锋  尤春安 《岩土力学》2006,27(Z1):137-139
由于传感器与周围介质刚度不耦合的原因,埋入式压力传感器所测得读数并不是材料内部真正的受力状态。根据压力传感器的实际结构,采用有限元数值模拟分析方法,计算得出压力传感器的实际受力特征与应力分布规律,提出了压力传感器读数的修正方法,为压力传感器的正确使用提供理论依据和可靠的方法。  相似文献   
975.
在进行基坑支护设计时,现行规范采用朗肯土压力理论计算基坑支护结构土压力。这种设计计算方法是基于饱和土力学理论的,误差较大。依据非饱和土力学理论,对基坑非饱和土体主动土压力及被动土压力计算公式进行了推导。在此基础上,以实际工程为例,就基质吸力及施工季节对基坑支护结构土压力的影响进行了探讨。  相似文献   
976.
陈存礼  胡再强  李鸿儒  马军锋 《岩土力学》2006,27(Z1):1107-1111
通过软基坝下深埋涵洞的三维有限元计算,对涵洞的土压力及沉降问题进行了分析研究。研究结果表明: (1)在洞顶采用减荷措施时,洞顶竖向土压力明显减小,减荷效果比较显著;而对洞体的最大不均匀沉降率基本没有影响,涵洞周边土压力的分布特征与无减荷时也是相同的。(2)洞基处理深度变化对洞体附近的应力有影响,且随处理深度的增大,洞顶竖向土压力和洞侧面水平土压力分别有缓慢增大和缓慢减少的趋势。(3)洞底沉降随处理深度的增大而有微弱的减小,但不均匀沉降均小于0.5 %,且从总体上看,其量值对工程的影响并无本质的差异,对洞基不进行处理时,洞基的不均匀沉降少许的增大不会对涵洞造成危害。  相似文献   
977.
The stability and phase relations of phengitic muscovite in a metapelitic bulk composition containing a mixed H2O+CO2 fluid were investigated at 6.5–11 GPa, 750–1050°C in synthesis experiments performed in a multianvil apparatus. Starting material consisted of a natural calcareous metapelite from the coesite zone of the Dabie Mountains, China, ultrahigh-pressure metamorphic complex that had experienced peak metamorphic pressures greater than 3 GPa. The sample contains a total of 2.1 wt.% H2O and 6.3 wt.% CO2 bound in hydrous and carbonate minerals. No additional fluid was added to the starting material. Phengite is stable in this bulk composition from 6.5 to 9 GPa at 900°C and coexists with an eclogitic phase assemblage consisting of garnet, omphacite, coesite, rutile, and fluid. Phengite dehydrates to produce K-hollandite between 8 and 11 GPa, 750–900°C. Phengite melting/dissolution occurs between 900°C and 975°C at 6.5–8 GPa and is associated with the appearance of kyanite in the phase assemblage. The formation of K-hollandite is accompanied by the appearance of magnesite and topaz-OH in the phase assemblage as well as by significant increases in the grossular content of garnet (average Xgrs=0.52, Xpy=0.19) and the jadeite content of omphacite (Xjd=0.92). Mass balance indicates that the volatile content of the fluid phase changes markedly at the phengite/K-hollandite phase boundary. At P≤8 GPa, fluid coexisting with phengite appears to be relatively CO2-rich (XCO2/XH2O=2.2), whereas fluid coexisting with K-hollandite and magnesite at 11 GPa is rich in H2O (XCO2/XH2O=0.2). Analysis of quench material and mass balance calculations indicate that fluids at all pressures and temperatures examined contain an abundance of dissolved solutes (approximately 40 mol% at 8 GPa, 60 mol% at 11 GPa) that act to dilute the volatile content of the fluid phase. The average phengite content of muscovite is positively correlated with pressure and ranges from 3.62 Si per formula unit (pfu) at 6.5 GPa to 3.80 Si pfu at 9 GPa. The extent of the phengite substitution in muscovite in this bulk composition appears to be limited to a maximum of 3.80–3.85 Si pfu at P=9 GPa. These experiments show that phengite should be stable in metasediments in mature subduction zones to depths of up to 300 km even under conditions in which aH2O1. Other high-pressure hydrous phases such as lawsonite, MgMgAl-pumpellyite, and topaz-OH that may form in subducted sediments do not occur within the phengite stability field in this system, and may require more H2O-rich fluid compositions in order to form. The wide range of conditions under which phengite occurs and its participation in mixed volatile reactions that may buffer the composition of the fluid phase suggest that phengite may significantly influence the nature of metasomatic fluids released from deeply subducted sediments at depths of up to 300 km at convergent plate boundaries.  相似文献   
978.
天然高压矿物研究的新进展及其在地幔矿物学中的意义   总被引:4,自引:0,他引:4  
对地表陨石坑岩石和陨石的冲击变质效应的研究, 是以往发现天然高压矿物的主要途径。α-PbO2 超斯石英、(Na,K,Ca)AlSi3O8-锰钡矿以及磷灰石高压同质多像变体等是几个近期在陨石中发现的天然高压相,这些高压相很可能存在于地幔之中。天然高压矿物的发现对地幔矿物学研究和发展起了推动作用。  相似文献   
979.
大别山双河和碧溪岭超高压变质岩流体包裹体研究   总被引:9,自引:2,他引:7  
傅斌  肖益林 《岩石学报》2000,16(1):119-126
对大别山双河和碧溪岭含柯石英榴岩和硬玉石英岩进行了详细的流体包裹体研究。根据流体包裹体的成分和盐度的不同,可以划分出至少五种类型不同的气液包裹体;(1)N2包裹体;(3)高盐度流体包裹体;(3)CO2包裹体;(4)CO2-H2O包裹体;(5)低盐度流体包裹体。本仅见于含柯石英榴辉岩,而高盐度流体包裹体则几乎存在于所有的榴辉岩和硬玉石英岩中。CO2包裹体沿榴辉岩中微剪切带分布,或存在于强变形的硬玉石  相似文献   
980.
松辽盆地深层孔隙流体压力预测   总被引:10,自引:2,他引:8       下载免费PDF全文
刘文龙  柴文华 《地球科学》2000,25(2):137-142
孔隙流体压力属于流体状态参量, 它是进行盆地动力学分析、油气成藏动力学分析以及油气预测的重要因素之一.孔隙流体压力的预测模式应尽量将各种地质作用对其的贡献考虑进去, 并且, 利用大量的实际地层测试参数与各种地球物理参数之间的相互关系来选择适当的数学模型.选用神经网络计算技术对松辽盆地深层孔隙流体压力进行了预测, 并对孔隙流体压力的可能成因进行了分析.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号