首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2127篇
  免费   286篇
  国内免费   229篇
测绘学   64篇
大气科学   227篇
地球物理   651篇
地质学   621篇
海洋学   124篇
天文学   747篇
综合类   91篇
自然地理   117篇
  2024年   17篇
  2023年   16篇
  2022年   25篇
  2021年   23篇
  2020年   28篇
  2019年   43篇
  2018年   31篇
  2017年   44篇
  2016年   32篇
  2015年   49篇
  2014年   51篇
  2013年   50篇
  2012年   71篇
  2011年   89篇
  2010年   78篇
  2009年   175篇
  2008年   149篇
  2007年   182篇
  2006年   213篇
  2005年   144篇
  2004年   168篇
  2003年   142篇
  2002年   105篇
  2001年   127篇
  2000年   140篇
  1999年   141篇
  1998年   108篇
  1997年   37篇
  1996年   33篇
  1995年   46篇
  1994年   24篇
  1993年   14篇
  1992年   12篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1954年   4篇
排序方式: 共有2642条查询结果,搜索用时 9 毫秒
811.
A few classes of the light curve of the black hole candidate GRS 1915+105 have been analysed in detail. We discover that unlike the previous findings, quasi-periodic oscillations (QPOs) occasionally occur even in the so-called 'On' or softer states. Such findings may require a revision of the accretion/wind scenario of the black hole candidates. We conjecture that considerable winds that are produced in 'Off' states cool down as a result of Comptonization and fall back to the disc, creating an excess accretion rate and producing the so-called 'On' state. After the drainage of the excess matter, the disc goes back to the 'Off' state. Our findings strengthen the shock oscillation model for QPOs.  相似文献   
812.
813.
814.
815.
Interannual signals in length of day and atmospheric angular momentum   总被引:2,自引:0,他引:2  
Atmospheric angular momentum (AAM) and length of day (LOD) series are investigated for their characteristics on interannual time scales during the half-century period 1949 to 1998. During this epoch, the interannual variability in LOD can be separated naturally into three bands: a quasi-biennial, a triennial-quadrennial and one at six-seven years. The atmosphere appears to excite the first two bands, while it does not contribute to the last. Considering the quasi-biennial (QB) band alone, the atmosphere appears to excite most of its signal in LOD, but it arises from separate fluctuations with stratospheric and tropospheric origin. Thus, although close in frequency, stratospheric and tropospheric processes differ in their amplitude and phase variability. The time shift can be noted especially during the strong El Niño events of 1982/83 and 1997/98 when both processes have positive phase and thus combine to help produce particularly strong peak in AAM and LOD. In addition, we have reconfirmed the downward propagation in the stratosphere and upward propagation in the troposphere of AAM observed in earlier studies for other variables. In the triennial-quadrennial (TQ) band, time-variable spectral analyses reveal that LOD and AAM contain strong variability, with periods shorter than four years before 1975 and longer thereafter. This signal originates mainly within the troposphere and propagates upwards from the lower to the higher layers of the troposphere. According to a zonal analysis, an equatorial poleward mode, strongly linked to the SOI, explains more than 60% of the total variability at these ranges. In addition, this study also indicates that an equatorward mode, originating within polar latitudes, explains, on average, more than 15% of the triennial-quadrennial oscillation (TQO) variability in AAM, and up to 30% at certain epochs. Finally, a six year period in LOD noted in earlier studies, as well as in lengthier series covering much of the century, is found to be absent in atmospheric excitations, and it is thus likely to arise from mantle/core interactions.  相似文献   
816.
We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.  相似文献   
817.
818.
Multiple inverted-V structures are commonly observed on the same auroral zone crossing by a lowaltitude orbiting satellite. Such structures appear grouped and apparently result from an ionospheric and/or magnetospheric mechanism of stratification. More than two years of AUREOL-3 satellite observations were analyzed to study their properties and their formation in the framework of the ionosphere-magnetosphere coupling model proposed by Tverskoy. This model predicts some natural periodicity in the electrostatic potential profile (and subsequently in the field-aligned current profiles) that could account for oscillations experimentally observed in the auroral zone, such as successive inverted-Vs. Experimental results obtained during quiet or moderately active periods demonstrate that the number of structures observed within a given event is well described by a scaling parameter provided by the hot plasma stratification theory and expressed in terms of the field-aligned current density, the total width of the current band, the plasma sheet ion temperature, and the height-integrated Pedersen conductivity of the ionosphere. The latitudinal width, in the order of 100/200 km at ionospheric altitudes, is relatively independent of the current density, and is determined not only by the existence of a potential difference above the inverted-Vs, but also by basic oscillations of the ionosphere-magnetosphere coupling system predicted by Tverskoy. The large number of cases studied by the AUREOL-3 satellite provides reliable statistical trends which permits the validation of the model and the inference that the multiple structures currently observed can be related directly to oscillations of the magnetospheric potential (or the pressure gradients) on a scale of 1000/2000 km in the near-Earth plasma sheet. These oscillations arise in the Tverskoy model and may naturally result when the initial pressure gradients needed to generate a large-scale field-aligned current have a sufficiently wide equatorial scale, of about 1 RE or more.  相似文献   
819.
Three main physical processes (and associated properties) are currently used to describe the flux and anisotropy time profiles of solar energetic particle events, called SEP profiles. They are (1) the particle scattering (due to magnetic waves), (2) the particle focusing (due to the decrease of the amplitude of the interplanetary magnetic field (IMF) with the radial distance to the Sun) and (3) the finite injection profile at the source. If their features change from one field line to another, i.e. if there is a cross IMF gradient (CFG), then the shape of the SEP profiles will depend, at onset time, on the relative position of the spacecraft to the IMF and might vary significantly on small distance scale (e.g. 106 km). One type of CFG is studied here. It is called intensity CFG and considers variations, at the solar surface, only of the intensity of the event. It is shown here that drops of about two orders of magnitude over distances of 104 km at the Sun (1° of angular distance) can influence dramatically the SEP profiles at 1 AU. This CFG can lead to either an under or overestimation of both the parallel mean free path and of the injection parameters by factor up to, at least, 2/3 and 18, respectively. Multi-spacecraft analysis can be used to identify CFG. Three basic requirements are proposed to identify, from the observation, the type of the CFG being measured.  相似文献   
820.
以山西省及邻区十几年来所发生的几个ML4.5以上地震为例,对山西临汾中心地震台地电阻率观测数据分析、处理后所提取出的异常进行了分析,总结出临汾中心地震台地电阻率对应中强地震的中短期异常变化特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号