首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   99篇
  国内免费   205篇
测绘学   5篇
大气科学   3篇
地球物理   378篇
地质学   327篇
海洋学   290篇
综合类   61篇
自然地理   94篇
  2024年   11篇
  2023年   22篇
  2022年   34篇
  2021年   36篇
  2020年   24篇
  2019年   35篇
  2018年   25篇
  2017年   25篇
  2016年   36篇
  2015年   35篇
  2014年   48篇
  2013年   51篇
  2012年   38篇
  2011年   56篇
  2010年   57篇
  2009年   51篇
  2008年   69篇
  2007年   51篇
  2006年   70篇
  2005年   43篇
  2004年   59篇
  2003年   34篇
  2002年   39篇
  2001年   37篇
  2000年   22篇
  1999年   35篇
  1998年   16篇
  1997年   18篇
  1996年   14篇
  1995年   9篇
  1994年   11篇
  1993年   6篇
  1992年   8篇
  1991年   7篇
  1990年   10篇
  1989年   3篇
  1986年   1篇
  1985年   5篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1158条查询结果,搜索用时 15 毫秒
21.
The bottom sediment from three coring stations in Lake Lugano (Lago di Lugano) show major differences in their role in the P-cycles related to their geochemistry and characteristics of sedimentation. In the northern basin, the deepest sediment may be considered practically inactive, due to a permanently reduced condition at the sediment-water interface. In the southern basin, the sediments are active with respect to P-recycling with strong seasonal variations. One of the sites (Figino) behaves as a sink for P due to a high iron content and an important rate of detrital sedimentation.  相似文献   
22.
SPATIAL DISTRIBUTION OF NUTRIENTS OF SHALLOW LAKE IN THE ZHALONG WETLAND   总被引:1,自引:1,他引:1  
1 INTRODUCTIONNitrogen and phosphorus in the water are the nu-trients limited in natural wetlands,which seriously in-fluence on the ecosystem production and the biodiver-sity(Mitsch,Grosselin,2000).Nitrogen and phos-phorus recycles have been interrupted b…  相似文献   
23.
24.
用超声技术提取沉积物样品中松散结合态磷,并与振荡提取结果进行比较。结果表明,超声提取结果与振荡提取结果大致相当。超声提取耗时短,操作简单易行,测试结果精密度为3.8%(RSD,n=7),可以替代振荡方法提取沉积物中的松散结合态磷。  相似文献   
25.
Natural riparian forest wetlands are known to be effective in their ability to remove nitrate by denitrification and sediments with attached phosphorus via sedimentation. On the other hand, litter input and decomposition is a process of crucial importance in cycling of nitrogen and phosphorus in a forest ecosystem.In this study we investigated the amount of nitrogen and phosphorus entering the alder fen ecosystem through leaf litter and its decomposition and the removal capacity of nitrogen and phosphorus by measuring denitrification and sedimentation in the alder fen.We found an average input of leaf litter during fall 1998 of 226 g m−2 yr−1 DW with nutrient concentration of 0.17% P and 1.6% N. This means a yearly input of 0.4 g m−2 yr−1 P and 3.6 g m−2 yr−1 N. The decomposition of leaf litter using litter bags with small and large mesh size resulted in bags with macroinvertebrates (large mesh size) and without macroinvertebrates (small mesh size). After 57 days the litter bags with macroinvertebrates had a decomposition rate of 79%.Denitrification was measured in May and June of 1997 using the acetylene inhibition technique on intact soil cores and slurry-experiments. The average annual denitrification rate was 0.2 g m−2 yr−1 N using data from the core experiments. The denitrification rate was higher after addition of nitrate, indicating that denitrification in the riparian alder fen is mainly controlled by nitrate supply.The sedimentation rate in the investigated alder fen ranged from 0.47 kg m−2 yr−1 DW to 4.46 kg m−2 yr−1 DW in 1998 depending on the study site and method we used. Sedimentation rates were lower in newly designed plate traps than in cylinder traps. The alder fen also showed lower rates than the adjacent creek Briese. Average phosphorus removal rate was 0.33 g m−2 yr−1 P.Input sources for the surface water of the alder fen are sediment mineralization and decomposition of leaf litter; output sources are sedimentation and denitrification. This study showed that a nutrient input of 24.58 kg ha−1 yr−1 N, 8.8 kg ha−1 yr−1 P and 419 kg ha−1 yr−1 DOC into the surface water of the alder fen is possible. Alder fens cannot improve water quality of an adjacent river system. This is only true for a nearly pristine alder fen with the hydrology of 10 months flooded conditions and 2 months non-flooding conditions a year.  相似文献   
26.
A paleolimnological evaluation of cladoceran microfossils was initiated to study limnological changes in Lake Apopka, a large (125 km2), shallow (mean depth = 1.6 m), warm, polymictic lake in central Florida. The lake switched from macrophyte to algal dominance in the late 1940s, creating a Sediment Discontinuity Layer (SDL) that can be visually used to separate sediments derived from macrophytes and phytoplankton. Cladoceran microfossils were enumerated as a means of corroborating extant eutrophication data from the sediment record. Inferences about the timing and trajectory of eutrophication were made using the cladoceran-based paleo-reconstruction. The cladoceran community of Lake Apopka began to change abruptly in both total abundance and relative percent abundance just before the lake shifted from macrophyte to algal dominance. Alona affinis, a mud-vegetation associated cladoceran, disappeared before the SDL was formed. Planktonic and benthic species also began to increase below the SDL, indicating an increase in production of both planktonic and benthic species. Chydorus cf. sphaericus, an indicator of nutrient loading, increased relative to all other cladocerans beginning in the layer below the SDL and continuing upcore. Changes in the transitional sediment layer formed before the lake switched to phytoplankton dominance, including an increase in total phosphorus concentration, suggest a more gradual eutrophication process than previously reported. Data from this study supported conclusions from other paleolimnological studies that suggested anthropogenic phosphorus loading was the key factor in the hypereutrophication of Lake Apopka.  相似文献   
27.
总磷作为饮用水生物稳定性控制指标的研究   总被引:13,自引:0,他引:13       下载免费PDF全文
根据国内提出的控制饮用水生物稳定性的可同化有机碳(AOC)标准,通过配制水样研究了AOC及细菌再生长潜力(BRP)同水中磷含量的关系;同时针对净水工艺试验出水水样,考察了水中的磷同其生物稳定性的关系。结果表明,对于配水水样,在一定的磷浓度范围内,磷是水中细菌生长的限制因子;在净水试验工艺出水水样中添加50μg/L的PO43--P后,AOC增加了55%,BRP增加了123%,表明水中磷是其生物稳定性的限制因子。由于常规的净水工艺对水中的磷可以有效去除,把水中总磷(TP)控制在5μg/L内来提高饮用水生物稳定性具有一定的可能性和现实性。  相似文献   
28.
滇池是世界上磷质来源最丰富的湖泊,是研究磷的现代沉积和微生物对磷循环作用及微生物成矿的天然场所。研究发现,滇池微生物种群和数量繁多,但能对磷溶解、转化、迁移、聚集、沉积的微生物主要有解磷菌和聚磷菌两类。这两类微生物与滇池磷的含量之间有一系列规律的相关性:在底泥磷高含量区域,解磷菌的种群和数量与底泥磷含量成负相关关系,与水体磷含量成正相关关系,而聚磷菌的种群和数量与底泥磷含量成正相关关系,与水体磷含量成负相关关系;在底泥磷低含量区域,上述相关性则相反。滇池中这种活着的微生物在自然环境条件下对磷的溶解、转化、迁移、聚集和沉积的作用,对古磷块岩微生物成矿说提供了可靠的依据,而且对以磷为限制性因子的湖、海、江河环境污染的防治提供了理论资料。  相似文献   
29.
An evaluation of the distribution of P concentrations in streamflow, P fractions andthe microbial biomass P pool was made of bed and bank sediments along a lowlandstream in New Zealand. Agricultural intensification increased downstream. However,most P fractions decreased downstream (total P decreased from c. 400 to 250 mg kg-1) in bed sediments, while P in streamflow remained relatively constant (generally < 0.005 mg l-1) and sediment microbial P increased from 2 to 8 mg kg-1. An investigation of P release from dried and rewetted sediments showed that solution P (CaCl2-P) increased, on average > 300%, and proportional to the size of the microbial biomass P pool before drying, except in sediments with much organic carbon (OC). When supplied with a P source (1 mg l-1) and then simultaneously with a C source (glucose, 100 mg l-1), all sediment behaved similarly and biotic sorption accounted for, on average, 27 and 34% of the total sediment uptake, respectively (maximum of 58%). The quantity of P taken up was related to the initial size of the microbial biomass P pool, and the availability of P as influenced by organic P complexes and OC. The sediment microbial biomass represents a transient, but small store of P could be useful to indicate bioavailable P inputs.  相似文献   
30.
采用Luminol-H。O。Air(巨)化学发光反应体系作为分析检测方法,建立了一个测定地质样品中痕量锑的化学发光分析法。方法的原理是用AgNO。吸收由样品发生的氢化锑气体,使吸收液中生成Sb(巨)与过量的K。Cr。O,反应生成Cr(1),方法的检出限为0.6us/mlSb,工作曲线的线性范围是2~1000ng/mlSb,测定的相对标准偏差小于5%。本方法已用于地质样品中痕量佛的测定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号