首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   18篇
  国内免费   91篇
地球物理   32篇
地质学   265篇
海洋学   7篇
综合类   1篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   5篇
  2020年   7篇
  2019年   9篇
  2018年   4篇
  2017年   9篇
  2016年   2篇
  2015年   11篇
  2014年   4篇
  2013年   16篇
  2012年   11篇
  2011年   21篇
  2010年   8篇
  2009年   13篇
  2008年   11篇
  2007年   30篇
  2006年   23篇
  2005年   15篇
  2004年   18篇
  2003年   13篇
  2002年   2篇
  2001年   12篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
排序方式: 共有305条查询结果,搜索用时 12 毫秒
11.
Plio-Pleistocene volcanism in the Golan and Galilee (northeasternIsrael) shows systematic variability with time and location:alkali basalts were erupted in the south during the Early Pliocene,whereas enriched basanitic lavas erupted in the north duringthe Late Pliocene (Galilee) and Pleistocene (Golan). The basaltsshow positive correlations in plots of ratios of highly to moderatelyincompatible elements versus the concentration of the highlyincompatible element (e.g. Nb/Zr vs Nb, La/Sm vs La) and indiagrams of REE/HFSE (rare earth elements/high field strengthelements) vs REE concentration (e.g. La/Nb vs La). Some of thesecorrelations are not linear but upward convex. 87Sr/86Sr ratiosvary between 0·7031 and 0·7034 and correlate negativelywith incompatible element concentrations and positively withRb/Sr ratios. We interpret these observations as an indicationthat the main control on magma composition is binary mixingof melts derived from two end-member mantle source components.Based on the high Sr/Ba ratios and negative Rb anomalies inprimitive mantle normalized trace element diagrams and the moderateslopes of MREE–HREE (middle REE–heavy REE) in chondrite-normalizeddiagrams, we suggest that the source for the alkali basalticend-member was a garnet-bearing amphibole peridotite that hadexperienced partial dehydration. The very high incompatibleelement concentrations, low K content, very low Rb contentsand steep MREE–HREE patterns in the basanites are attributedto derivation from amphibole- and garnet-bearing pyroxeniteveins. It is suggested that the veins were produced via partialmelting of amphibole peridotites, followed by complete solidificationand dehydration that effectively removed Rb and K. The requirementfor the presence of amphibole limits both sources to lithosphericdepths. The spatial geochemical variability of the basalts indicatesthat the lithosphere beneath the region is heterogeneous, composedof vein-rich and vein-poor domains. The relatively uniform 143Nd/144Nd(Nd = 4·0–5·2) suggests that the two mantlesources were formed by dehydration and partial melting of anoriginally isotopically uniform reservoir, probably as a resultof a Paleozoic thermal event. KEY WORDS: basanites; lithospheric heterogeneity; magma mixing; amphibole peridotite; pyroxenites  相似文献   
12.
Distribution of trace elements in spinel and garnet peridotites   总被引:5,自引:1,他引:5  
The distribution of trace elements in the upper mantle has been discussed on the basis of the trace element abundances in bulk rocks and constituent minerals of two spinel and garnet facies peridotite xenoliths in alkali basalts from eastern China. The data presented are consistent with the suggestion that highly incompatible elements (Rb, Ba, Th, U, Sr, Nb, Ta) mainly reside in intergranular components, and to a lesser extent in fluid inclusions in minerals. The LILE composition in olivine and orthopyroxene can be seriously affected by the presence of fluid inclusions. Consequently the subsolidus partitioning of the LILE cannot be used to infer the olivine-melt and orthopyroxene-melt partition coefficients for these elements. There is a significant difference in (Opx/Cpx)HREE ratios for spinel and garnet peridotites, suggesting a P-T control on equilibrium partition coefficients.  相似文献   
13.
The basalt-borne peridotite xenoliths from Jiangsu-Anhui provinces were analyzed for whole rock Os isotopic compositions in two laboratories of USTC, China and CRPG, France, respectively. The187Os/188Os ratio of the sample set ranges from 0.119 to 0.129 (25 samples, USTC) and from 0.117 to 0.131 (17 samples, CRPG). The Os isotopic compositions of most samples are less than 0.129 and depleted relatively to the primitive mantle, showing a good correlation with the major element compositions. With the187Os/188Os-Al2O3 alumichron, the samples yield a model age of 2.5 ± 0.1 Ga (data of USTC) and 1.9 ± 0.1 Ga (data of CRPG), late Archean to early Pro-terozoic. The two samples with the lowest187Os/188Os ratio (0.119 and 0.117) have the TRD (Re depleted age) of 1.1 Ga (USTC) and 1.4 Ga (CRPG), mid-Proterozoic. The Os isotope model age shows that the peridotite xenoliths from Cenozoic alkali basalt in Jiangsu-Anhui provinces have an old formation age (early- to mid- Proterozoic). They are not newly produced mantle after the Phanerozoic replacement of the lithosphere mantle, but residual fractions of Proterozoic mantle.  相似文献   
14.
东南沿海地区古近纪大陆岩石圈地幔特征及成因   总被引:3,自引:0,他引:3  
东南沿海地区新生代玄武岩中的橄榄岩包体来自岩石圈地幔 ,上地幔橄榄岩包体的岩石学及地球化学特征都记录了地幔演化的历史。普宁橄榄岩包体斜方辉石含量与太古宙克拉通地幔类似 ,但在矿物学、REE、痕量元素和Sr Nd同位素上又与太古宙岩石圈地幔不同。橄榄岩包体的岩相学、矿物学、REE、痕量元素特征都提供了含H2 O富Si流体交代橄榄岩的证据 ,这种流体可能主要是洋壳物质局部熔融而成。流体交代使橄榄岩富Si,同时富Sr、Pb和强不相容元素等大洋岩石圈物质。这表明普宁大陆岩石圈地幔既保留太古宙岩石圈地幔的特征 ,又具有大洋俯冲地幔的特征 ,它是古老岩石圈地幔向大洋岩石圈地幔转换的一部分 ,这种转换可能是大洋岩石圈与大陆岩石圈地幔相互作用的结果。  相似文献   
15.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   
16.
Abstract: The Antique ophiolite, located in Panay island (west‐central Philippines), corresponds to several tectonic slices within the suture zone between the Philippine Mobile Belt (PMB) and the North Palawan Block (NPB). It includes dismembered fragments of a basaltic sequence, dominantly pillow‐lavas with minor sheet flows, rare exposures of sheeted dikes, isotropic gabbros, subordinate layered mafic and ultramafic rock sequences and serpentinites. Most of the ophiolite units commonly occur as clasts and blocks within the serpentinites, which intrude the whole ophiolitic body, as well as, the basal conglomerate of the overlying Middle Miocene sedimentary formation. The volcanic rock sequence is characterized by chemical compositions ranging from transitional (T)‐MORB, normal (N)‐MORB and to chemistry intermediate between those of MORB and island arc basalt (IAB). The residual upper mantle sequence is harzburgitic and generally more depleted than the upper mantle underlying modern mid‐oceanic ridges. Calculations using whole‐rock and mineral compositions show that they can represent the residue of a fertile mantle source, which have undergone degrees of partial melting ranging from 9‐22.5 %. Some of the mantle samples display chondrite‐nor‐malized REE and extended multi‐element patterns suggesting enrichments in LREE, Rb, Sr and Zr, which are comparable to those found in fore‐arc peridotites from the Izu‐Bonin‐Mariana (IBM) arc system. The Antique ultramafic rocks also record relatively oxidizing mantle conditions (Δlog fO2 (FMQ)=0.9‐3.5). As a whole, the ophiolite probably represents an agglomeration of oceanic ridge and fore‐arc crust fragments, which were juxtaposed during the Miocene collision of the PMB and the NPB. The intrusion of the serpentinites might be either coeval or subsequent to the accretion of the oceanic crust onto the fore‐arc. Volcanogenic massive sulfide (VMS) deposits occur either in or near the contact between the pillow basalts and the overlying sediments or interbedded with the sediments. The morphology of the deposits, type of metals, ore texture and the nature of the host rocks suggest that the formation of the VMS bodies was similar to the accumulation of metals around and in the subsurface of hydrothermal vents observed in modern mid‐oceanic ridge and back‐arc basin rift settings. The podiform chromitites occur as pods and subordinate layers within totally serpentinized dunite in the residual upper mantle sequence. No large coherent chromitite deposit was found since the host dunitic rocks often occur as blocks within the serpentinites. It is difficult to evaluate the original geodynamic setting of the mineralized bodies since the chemistry of the host rocks were considerably modified by alteration during their tectonic emplacement. A preliminary conclusion for Antique is that the VMS is apparently associated with a primitive tholeiitic intermediate MORB‐IAB volcanic suite, the chemistry of which is close to the calculated composition of the liquid that coexisted with the podiform chromitites.  相似文献   
17.
云南新平县双沟蛇绿岩的初步研究   总被引:17,自引:3,他引:17  
双沟蛇绿岩由基底岩石、辉长—辉绿岩和玄武岩三部分组成。岩相学和地球化学研究表明,双沟斜长二辉橄榄岩中存在地幔交代作用的证据,属于浸染橄榄岩(impregnated peridotite)。蛇绿岩岩石组合中缺少超镁铁质堆晶岩和席状岩墙群,而辉绿岩和玄武岩的化学成分与MORB相拟,表明双沟蛇绿岩的形成机制与大洋中脊环境类似,但岩浆房很小,扩张速度缓慢,推测相当于哀牢山古特提斯小洋盆扩张早期的裂谷阶段的产物。  相似文献   
18.
新疆巴楚地区金伯利质角砾橄榄岩物质组成及含矿性研究   总被引:2,自引:0,他引:2  
鲍佩声  苏犁  翟庆国  肖序常 《地质学报》2009,83(9):1276-1301
本文讨论出露于新疆巴楚瓦吉里塔格地区的一种角砾状超镁铁岩,其结构、成分复杂,由超镁铁岩包体、斑晶(或捕晶)及基质三部分构成。超镁铁岩包体常见单辉辉石岩、纯橄岩,其次有少量橄榄辉石岩。研究表明均属基性岩浆结晶岩,本次研究未见幔源橄榄岩包体;斑晶主要为橄榄石,次为金云母,基质由微晶(10~40μm)单斜辉石、钙铁榴石、钙钛矿、磁铁矿(或含钛磁铁矿)、蛇纹石、碳酸盐及金属硫化物等组成;捕晶包括单斜辉石、褐色角闪石、磷灰石、含钛磁铁矿等。多种地球化学判别图均指示其属金伯利岩类,但低MgO和低Mg#比值、高TFe2O3和CaO等区别于世界典型金伯利岩。与典型金伯利岩有相似之处,该类岩石均具有向右陡倾的REE配分型式,但(La/Yb)n比值略偏低;微量元素蛛网图也与典型金伯利岩基本一致,仅显示更加富集不相容元素,具有更显著K, Ti负异常,且部分样品出现Rb, Zr, P负异常,指示其源区地幔交代程度偏低。鉴于岩石的产状、结构构造、矿物组合和地球化学性质近似于金伯利岩,但缺少高铬铬铁矿、镁铝榴石、镁钛铁矿等金伯利岩指示矿物,故不属典型的金伯利岩,可称之为金伯利质角砾橄榄岩。就少量研究样品所示信息,该类岩石不具有寻找金刚石的潜在远景,但鉴于巴楚及邻区尚有许多角砾状超镁铁岩岩墙和岩脉出露,该区金刚石成矿条件有待更进一步的研究。  相似文献   
19.
20.
对江苏东海橄榄岩与榴辉岩中部分矿物的初步测试分析 ,发现其中存在一种金属矿物。其矿物结构与镍纹石近似。推测该矿物为具地幔特征的铁镁质残留物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号