首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   4篇
  国内免费   23篇
地球物理   7篇
地质学   62篇
海洋学   1篇
综合类   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2016年   4篇
  2015年   1篇
  2013年   2篇
  2012年   8篇
  2011年   4篇
  2010年   2篇
  2009年   8篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1984年   2篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
61.
The early (Devonian) collisional stage in SW Iberia has been investigated through the analysis of deformation in the Cubito‐Moura schists, the main lithology of an Allochthonous Complex putatively rooted in the suture between the Ossa‐Morena and South Portuguese zones. The first deformation in these schists (D1) is recorded as a S1‐L1 mylonitic fabric well preserved in early quartz veins. Subsequent D2 deformation caused the main folds and the main (S2) foliation. After restoration, the stretching lineation (L1) trends at a small angle with the Ossa‐Morena/South Portuguese suture. This trend, together with the top‐to‐the‐east kinematics determined from quartz microfabric is indicative of an oblique left‐lateral collisional scenario in SW Iberia. Chlorite–white K‐mica–quartz ± chloritoid multi‐equilibrium calculations yield P–T conditions in the range 0.9–1.2 GPa and 300–400 °C, during the first collisional stage. P–T conditions during D2 were 0.3–0.8 GPa and 400–450 °C, thus indicating an important stage of exhumation of the Allochthonous Complex during these two collisional events, after subduction of the Ossa‐Morena Zone margin under the South Portuguese Zone continental crust. In the general context of the Variscan orogen, dominated by dextral collision, the left‐lateral convergence in SW Iberia can be explained in terms of the Avalonian salient represented by the South Portuguese Zone, which would impinge between Iberia and Morocco.  相似文献   
62.
The Sanbagawa high-pressure schists from central Shikoku in Southwest Japan have experienced high-strain ductile deformation during exhumation and cooling. This study examines the effects of high-strain ductile deformation on K–Ar ages of phengites on the basis of fabric, chemistry and K–Ar ages of phengites from the pelitic, psammitic and quartzose (or albitic) schists collected from the same outcrop in the albite–biotite zone. Phengites in the pelitic and psammitic schists generally occur forming aggregates consisting of fine-grained phengite crystals and are extremely fine-grained in domains close to relatively rigid garnet and albite porphyroblasts, indicating that deformation-induced grain-size reduction had taken place in phengite during the ductile deformation accompanying the exhumation of host schists. We suggest that the grain-size reduction of phengite is due to strain-induced recrystallization or dynamic recrystallization. The matrix phengites in schists are chemically heterogeneous on the thin-section scale but the phengites from pelitic and psammitic schists from the same outcrop have similar chemical range. Phengite included in garnet has a high Si value and its Na/(Na + K) and Mg/(Mg + Fe) ratios are significantly low in comparison with those in matrix. The phengite included in garnet records the chemistry in equilibrium with other major silicate phases during the higher pressure stage of the P–T–t history of the schists. In contrast, the matrix phengites having low Si values are likely to have been formed during retrograde metamorphism in extremely restricted equilibrium domains. The two or three different types of schists from the same outcrop, which have a similar grain size of phengite, have similar K–Ar ages, suggesting that the closure temperature does not depend on chemistry. However, the hematite-rich quartzose schist with strong grain-size reduction of both phengite and quartz has a significantly younger K–Ar phengite age than the pelitic and quartzose schists in the same outcrop that do not show grain-size reduction. We suggest that the exhumation tectonics of the schists, which have experienced strong ductile deformation at temperatures less than ~350°C, played an important role resulting in the observed variation in age.  相似文献   
63.
针对广西某氧化浸染型金矿的含金量低、含泥质高的特点,进行深入的提金试验研究。前人曾在矿山进行过工业规模的堆浸和池浸,均未达到预想效果,主要原因是未能解决好矿堆浸透性问题。试验通过优化制粒堆浸条件、应用滴淋布液技术等,大大地提高了矿堆浸透性能,最终获得了较满意的选别指标。试验结果说明只要采取有效措施,该矿石在生产现场用堆浸法提金还是可行的  相似文献   
64.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   
65.
浙西南八都群泥质麻粒岩的变质演化与pT轨迹   总被引:2,自引:0,他引:2  
浙西南古元古界八都群是目前华夏地块最古老的变质基底,以往研究认为其变质程度仅达角闪岩相。近来在对遂昌地区八都群富铝片麻岩的研究过程中,发现了具有"石榴石+夕线石+正/反条纹长石+黑云母"特征组合的泥质麻粒岩,表明该地体曾经历麻粒岩相变质改造。通过岩相学与矿物化学分析,确定该岩石经历了3个阶段的演化过程,即:早期进变质阶段(M1),形成"石榴石+黑云母+白云母+夕线石+斜长石+石英"的矿物组合;变质峰期阶段(M2-3),形成"石榴石+夕线石+三元长石+黑云母+石英"的矿物组合;峰期后降压冷却阶段(M4),形成"黑云母+白云母+新生斜长石+石英"的矿物组合。岩石中石榴石普遍发育与降温过程有关的扩散成分环带和与降压过程有关的斜长石后生合晶。通过石榴石-黑云母温度计和GASP压力计估算变质峰期的温压条件为800~850℃、0.6~0.7 GPa,峰期后退变质阶段的温压条件为560~590℃、0.25~0.33 GPa,具有顺时针样式的pT演化轨迹,反映一种陆壳碰撞增厚、后又拉伸减薄的动力学过程。  相似文献   
66.
Metapelite is one of the predominant rock types in the high-pressure–ultrahigh-pressure(HP–UHP) metamorphic belt of western Tianshan, NW China; however, the spatial and temporal variations of this belt during metamorphism are poorly understood. In this study, we present comparative petrological studies and 40Ar/39 Ar geochronology of HP and UHP pelitic schist exposed along the Habutengsu valley. The schist mainly comprises quartz, white mica, garnet, albite and bluish amphibole. In the Mn O–Na2O–Ca O–K2O–Fe O–Mg O–Al2O3–Si O2–H2O(Mn NCKFMASH) system, P–T pseudosections were constructed using THERMOCALC 333 for two representative pelitic schists. The results demonstrate that there was a break in the peak metamorphic pressures in the Habutengsu area. The northern schist has experienced UHP metamorphism, consistent with the presence of coesite in the same section, while the southern one formed at lower pressures that stabilized the quartz. This result supports the previous finding of a metamorphic gradient through the HP–UHP metamorphic belt of the Chinese western Tianshan by the authors. Additionally, phengite in the northern schist was modelled as having a Si content of 3.55–3.70(a.p.f.u.) at the peak stage, a value much higher than that of oriented matrix phengite(Si content 3.32–3.38 a.p.f.u.). This indicates that the phengite flakes in the UHP schist were subjected to recrystallization during exhumation, which is consistent with the presence of phengite aggregates surrounding garnet porphyroblast. The 40Ar/39 Ar age spectra of white mica(dominantly phengite) from the two schists exhibit similar plateau ages of ca. 315 Ma, which is interpreted as the timing of a tectonometamorphic event that occurred during the exhumation of the HP–UHP metamorphic belt of the Chinese western Tianshan.  相似文献   
67.
乌什-阿克苏地区位于塔里木克拉通西北缘,发育有世界上为数不多的且保存较为完整的典型前寒武纪蓝片岩地体.根据前人的研究,阿克苏地区的蓝片岩地体在俯冲、折返和折返后的过程中共经历了四个期次的变形,但是对于乌什地区的蓝片岩地体的构造变形特征研究目前仍为空白.本文通过对乌什与阿克苏地区的蓝片岩地体的构造变形特征进行系统的野外观...  相似文献   
68.
吉林-黑龙江高压变质带的初步厘定:证据和意义   总被引:3,自引:11,他引:3  
本文定义的吉林-黑龙江高压变质带是指我国东北地区佳木斯-兴凯地块西缘和南缘共同发育的呈弧形展布的高压变质带,具体包括佳木斯-兴凯地块西缘增生杂岩带(黑龙江蓝片岩带和张广才-小兴安岭增生杂岩带)和佳木斯-兴凯地块南缘的长春-延吉增生杂岩带.其中佳木斯-兴凯地块西缘增生杂岩带形成于晚三叠-早侏罗世(180 ~ 210Ma),为佳木斯-兴凯地块向西冲增生而形成的高压变质带;而长春-延吉增生杂岩带由一系列特征性俯冲-增生杂岩组成,包括石头口门-烟筒山红帘石片岩带、呼兰群变质杂岩、色洛河群变质杂岩、青龙村群变质杂岩和开山屯变质杂岩等,形成时代为187~230Ma,峰期为220~230Ma.长春-延吉增生杂岩带曾被认为是西拉木伦河断裂带的东延部分,但是区域构造分析表明,它们形成的动力学背景与佳木斯-兴凯地块西缘增生杂岩带相同,均为太平洋板块三叠纪-早侏罗世的西向俯冲导致佳木斯-兴凯地块自东向西的“剪刀式”闭合过程.我们将佳木斯-兴凯地块西缘和南缘发育的三叠纪-早侏罗世增生杂岩带作为统一的构造单元来考虑,结合该区发育有典型的高压变质带,因此命名为“吉林-黑龙江高压变质带,简称吉黑高压带”.吉黑高压带形成于太平洋板块三叠纪-早侏罗世的西向俯冲导致佳木斯-兴凯地块自东向西的“剪刀式”闭合的过程,同时该带记录了古亚洲构造域的结束和太平洋俯冲开始的关键时期,为两大构造域叠加与转换的关键性地质证据.  相似文献   
69.
陈斌 《岩石学报》1997,13(3):380-394
通过对福建沿海平潭-东山变质带中夕线石榴云母片岩的岩相学和变质作用特征的研究,讨论了该区变质作用的演化历史,为地质学家建立该区乃至整个东南部的构造演化模式提供科学的依据。研究表明,石榴夕线云母片岩实际上是两期变质作用叠加的产物,其中的石榴石、夕线石和黑云母等是第一期变质作用的产物,代表古老变质基底(泥质)的残余,而白云母和大部分石英(白云母石英片岩)则是在第二期变质作用(中生代区域变质)期间由前述变质基底改造而成。也就是说,在人们熟知的绿片岩相-低角闪岩相区域变质作用之前,还曾发生一期更高级的变质作用。第一期变质作用的条件为P=0.55~0.62GPa,T=692℃~717℃,达高角闪岩相;第二期变质作用在本区影响最大,并形成递增变质带,变质作用的温度和压力范围分别是P=0.2~0.5GPa,T=400℃~560℃,属中低级变质。早期高级变质残余的发现使我们不得不重新考虑福建沿海变质带的变质演化与构造演化的过程。  相似文献   
70.
Yasuyuki Banno 《Lithos》2000,50(4):289-303
The retrograde chemical zonal structure of amphibole in hematite-bearing basic and quartz schists from the higher grade zone in the Saruta-gawa area of the Sanbagawa belt was studied to investigate the relationships between the prograde and retrograde PT paths of the Sanbagawa metamorphism. This amphibole coexists with chlorite, epidote, muscovite, albite, quartz and hematite, and is composed of Al-rich core and Al-poor mantle. The core is fairly homogeneous and has a barroisitic composition. In the mantle part, [B]Na increases with decreasing [4]Al towards the margins, which have winchite–magnesioriebeckite compositions. The barroisite–winchite–magnesioriebeckite composite crystal is sometimes rimmed by actinolite and/or winchite with low [4]Al and [B]Na. The Al-rich core and Al-poor mantle are regarded as prograde and retrograde products, respectively. The retrograde mantle in the Saruta-gawa area: (1) is systematically richer in [B]Na [0.40–1.73 per formula unit (pfu; for O=23)] than that from the same grade zone in the Asemi-gawa area (0.19–0.78 pfu), about 8 km south of the studied area; (2) tends to be [B]Na-poorer (less than 1.73 pfu) than prograde sodic amphibole (up to 1.93 [B]Na pfu) produced in the peak temperature stage from the lower grade zone in the same and other areas; and (3) extends its compositional range towards higher [B]Na and lower [4]Al than prograde-formed amphibole from the same grade zone in the same area. These zonal characteristics imply that (1) the Saruta-gawa samples experienced retrograde metamorphism under higher P/T conditions than the Asemi-gawa samples, (2) the retrograde PT path of the Saruta-gawa area passes on the lower pressure side of the metamorphic field gradient, and (3) the Saruta-gawa samples underwent retrograde metamorphism under higher P/T conditions than the prograde metamorphism. The higher P/T conditions of the retrograde metamorphism suggests an increasing dP/dT of the geotherm during exhumation. Retrograde PT conditions during the formation of magnesioriebeckite can be roughly estimated at 7–8 kbar, 400–450°C based on semi-quantitative phase relations of actinolite–winchite–magnesioriebeckite–barroisite series associated with chlorite, epidote, muscovite, albite, quartz and hematite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号