首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4756篇
  免费   411篇
  国内免费   846篇
测绘学   45篇
大气科学   202篇
地球物理   657篇
地质学   2039篇
海洋学   1043篇
天文学   1430篇
综合类   168篇
自然地理   429篇
  2024年   23篇
  2023年   57篇
  2022年   105篇
  2021年   130篇
  2020年   131篇
  2019年   141篇
  2018年   118篇
  2017年   126篇
  2016年   138篇
  2015年   156篇
  2014年   214篇
  2013年   179篇
  2012年   179篇
  2011年   254篇
  2010年   184篇
  2009年   379篇
  2008年   345篇
  2007年   347篇
  2006年   359篇
  2005年   289篇
  2004年   298篇
  2003年   252篇
  2002年   236篇
  2001年   216篇
  2000年   213篇
  1999年   182篇
  1998年   193篇
  1997年   96篇
  1996年   88篇
  1995年   72篇
  1994年   53篇
  1993年   37篇
  1992年   32篇
  1991年   21篇
  1990年   27篇
  1989年   26篇
  1988年   14篇
  1987年   12篇
  1986年   15篇
  1985年   29篇
  1984年   21篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1979年   2篇
  1978年   2篇
排序方式: 共有6013条查询结果,搜索用时 453 毫秒
631.
We have obtained Bianchi type-III cosmological model with strange quark matter attached to the string cloud in general relativity. For solving the Einstein’s field equations the relation [C=A n ] between metric coefficients C and A is used. Also, some physical and kinematic properties of the model are discussed.The results are analogous to results obtained by Yilmaz (Gen. Rel. Grav. 38:1397–1406, 2006).  相似文献   
632.
We numerically integrate the equations of motion of the Sun in Galactocentric Cartesian rectangular coordinates for –4.5 Gyr ≤ t ≤ 0 in Newtonian mechanics with two different models for the Cold Dark Matter (CDM) halo, in MOdified Newtonian Dynamics (MOND) and in MOdified Gravity (MOG) without resorting to CDM. The initial conditions used come from the latest kinematical determination of the 3D Sun's motion in the Milky Way (MW) by assuming for the rotation speed of the Local Standard of Rest (LSR) the recent value Θ0 = 268 km s–1 and the IAU recommended value Θ0 = 220 km s–1; the Sun is assumed located at 8.5 kpc from the Galactic Center (GC). For Θ0 = 268 km s–1 the birth of the Sun, 4.5 Gyr ago, would have occurred at large Galactocentric distances (12–27 kpc depending on the model used), while for Θ0 = 220 km s–1 it would have occurred at about 8.8–9.3 kpc for almost all the models used. The integrated trajectories are far from being circular, especially for Θ0 = 268 km s–1, and differ each other with the CDM models yielding the widest spatial extensions for the Sun's orbital path (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
633.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   
634.
635.
A geometric method based on the high-order 3D Voronoi tessellation is proposed for identifying single galaxies, pairs and triplets. This approach allows us to select small galaxy groups and isolated galaxies in different environments and to find the isolated systems. The volume-limited sample of galaxies from the Sloan Digital Sky Survey Data Release 5 spectroscopic survey was used. We conclude that in such small groups as pairs and triplets, segregation by luminosity is clearly observed: galaxies in isolated pairs and triplets are on average two times more luminous than isolated galaxies. We consider the dark matter content in different systems. The median values of mass-to-luminosity ratio are  12 M/L  for the isolated pairs and  44 M/L  for the isolated triplets, and 7 (8)  M/L  for the most compact pairs (triplets). We also found that systems in denser environments have greater rms velocity and mass-to-luminosity ratio.  相似文献   
636.
We discuss short wavelength (inertial wave) instabilities present in the standard two-fluid neutron star model when there is sufficient relative flow along the superfluid neutron vortex array. We demonstrate that these instabilities may be triggered in precessing neutron stars, since the angular velocity vectors of the neutron and proton fluids are misaligned during precession. Our results suggest that the standard (Eulerian) slow precession that results for weak drag between the vortices and the charged fluid (protons and electrons) is not seriously affected by the instability. In contrast, the fast precession, which results when vortices are strongly coupled to the charged component, is generally unstable. The presence of this instability renders the standard (solid body) rotation model for free precession inconsistent and makes unsafe conclusions that have recently been drawn regarding neutron star interiors based on observations of precession in radio pulsars.  相似文献   
637.
N -body simulations of cold dark matter (CDM) have shown that, in this hierarchical structure formation model, dark matter halo properties, such as the density profile, the phase-space density profile, the distribution of axial ratio, the distribution of spin parameter and the distribution of internal specific angular momentum, follow 'universal' laws or distributions. Here, we study the properties of the first generation of haloes in a hot dark matter (HDM) dominated universe, as an example of halo formation through monolithic collapse. We find all these universalities to be present in this case also. Halo density profiles are very well fit by the Navarro, Frenk & White profile over two orders of magnitude in mass. The concentration parameter depends on mass as   c ∝ M 0.2  , reversing the dependence found in a hierarchical CDM universe. However, the concentration–formation time relation is similar in the two cases: earlier forming haloes tend to be more concentrated than their later forming counterparts. Halo formation histories are also characterized by two phases in the HDM case: an early phase of rapid accretion followed by slower growth. Furthermore, there is no significant difference between the HDM and CDM cases concerning the statistics of other halo properties: the phase-space density profile; the velocity anisotropy profile; the distribution of shape parameters; the distribution of spin parameter and the distribution of internal specific angular momentum are all similar in the two cases. Only substructure content differs dramatically. These results indicate that mergers do not play a pivotal role in establishing the universalities, thus contradicting models which explain them as consequences of mergers.  相似文献   
638.
Making robust predictions for the phase-space distribution of dark matter at the solar neighbourhood is vital for dark matter direct-detection experiments. To date, almost all such predictions have been based on simulations that model the dark matter alone. Here, we use three cosmological hydrodynamic simulations of bright, disc-dominated galaxies to include the effects of baryonic matter self-consistently for the first time. We find that the addition of baryonic physics drastically alters the dark matter profile in the vicinity of the solar neighbourhood. A stellar/gas disc, already in place at high redshift, causes merging satellites to be dragged preferentially towards the disc plane where they are torn apart by tides. This results in an accreted dark matter disc that contributes ∼0.25–1.5 times the non-rotating halo density at the solar position. The dark disc, unlike dark matter streams, is an equilibrium structure that must exist in disc galaxies that form in a hierarchical cosmology. Its low rotation lag with respect to the Earth significantly boosts Weakly Interacting Massive Particle (WIMP) capture in the Earth and Sun, boosts the annual modulation signal and leads to distinct variations in the flux as a function of recoil energy that allow the WIMP mass to be determined.  相似文献   
639.
An unbiased search for debris discs around nearby Sun-like stars is reported. 13 G-dwarfs at 12–15 parsec distance were searched at 850 μm wavelength, and a disc is confirmed around HD 30495. The estimated dust mass is  0.008 M  with a net limit  ≲0.0025 M  for the average disc of the other stars. The results suggest there is not a large missed population of substantial cold discs around Sun-like stars – HD 30495 is a bright rather than unusually cool disc, and may belong to a few hundred Myr old population of greater dust luminosity. The far-infrared and millimetre survey data for Sun-like stars are well fitted by either steady state or stirred models, provided that typical comet belts are comparable in size to that in the Solar system.  相似文献   
640.
We discuss the possibility of observing the products of the dark matter annihilation that was going on in the early Universe. Of all the particles that could be generated by this process, we consider only photons, as they are both uncharged and easily detectable. The younger the Universe was, the higher the dark matter concentration n and the annihilation rate (proportional to n 2) were. However, the emission from the very early Universe cannot reach us because of the opacity. The main part of the signal was generated at the moment the Universe had just become transparent for the photons produced by the annihilation. Thus, the dark matter annihilation in the early Universe should have created a sort of relic emission. We obtain its flux and the spectrum.
If weakly interacting massive particles (WIMPs) constitute dark matter, it is shown that we may expect an extragalactic gamma-ray signal in the energy range 0.5–20 MeV with a maximum near 8 MeV. We show that an experimentally observed excess in the gamma-ray background at 0.5–20 MeV could be created by the relic signal from the annihilation of WIMPs only if the dark matter structures in the Universe had appeared before the Universe became transparent for the annihilation products  ( z ≃ 300)  . We discuss in more detail physical conditions whereby this interpretation could be possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号