首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   751篇
  免费   146篇
  国内免费   352篇
测绘学   28篇
大气科学   1篇
地球物理   174篇
地质学   971篇
海洋学   33篇
天文学   7篇
综合类   20篇
自然地理   15篇
  2024年   6篇
  2023年   16篇
  2022年   44篇
  2021年   27篇
  2020年   52篇
  2019年   48篇
  2018年   46篇
  2017年   62篇
  2016年   42篇
  2015年   43篇
  2014年   46篇
  2013年   43篇
  2012年   62篇
  2011年   28篇
  2010年   32篇
  2009年   64篇
  2008年   58篇
  2007年   43篇
  2006年   58篇
  2005年   33篇
  2004年   48篇
  2003年   39篇
  2002年   48篇
  2001年   27篇
  2000年   31篇
  1999年   24篇
  1998年   29篇
  1997年   27篇
  1996年   21篇
  1995年   26篇
  1994年   17篇
  1993年   17篇
  1992年   8篇
  1991年   7篇
  1990年   4篇
  1989年   8篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1249条查询结果,搜索用时 31 毫秒
21.
The deformation pattern and the dynamics of the southern sector of the Aeolian archipelago are investigated. A study on the ground deformation, measured over the last 20 years in the trilateration geodetic network between the islands of Vulcano and Lipari, has been conducted. Analysis of the relative displacements and the uniform strain tensor parameters, as well as the comparison between areal dilatation and the vertical variations deduced by precise levelling, allow distinguishing different phases associated both with the regional dynamics and the local volcanic context of the area. These phases, however, appear to be closely interrelated. The analysis of the deformation pattern allows to constrain the predominance of a roughly E–W trending extension and a N–S contraction at a regional scale. This regime is consistent with right-lateral movements along a NW–SE striking fault system.  相似文献   
22.
Ultramafic xenoliths from a veined mantle wedge beneath the Kamchatka arc have non-chondritic, fractionated chondrite-normalized platinum-group element (PGE) patterns. Depleted (e.g., low bulk-rock Al2O3 and CaO contents) mantle harzburgites show clear enrichment in the Pd group relative to the Ir group PGEs and, in most samples, Pt relative to Rh and Pd. These PGE signatures most likely reflect multi-stage melting which selectively concentrates Pt in Pt–Fe alloys while strongly depleting the sub-arc mantle wedge in incompatible elements. Elevated gold concentrations and enrichment of strongly incompatible enrichment (e.g., Ba and Th) in some harzburgites suggest a late-stage metasomatism by slab-derived, saline hydrous fluids. Positive Pt, Pd, and Au anomalies coupled with Ir depletions in heavily metasomatized pyroxenite xenoliths probably reflect the relative mobility of the Pd and Ir groups (especially Os) during sub-arc metasomatism which is consistent with Os systematics in arc mantle nodules. Positive correlations between Pt, Pd, and Au and various incompatible elements (Hf, U, Ta, and Sr) also suggest that both slab-derived hydrous fluids and siliceous melts were involved in the sub-arc mantle metasomatism beneath the Kamchatka arc.  相似文献   
23.
Abstract: K–Ar ages of the following porphyry Cu deposits in the western Luzon arc are determined: Lobo-Boneng (10.50.4 Ma), Santo Niño (9.50.3 Ma), Black Mountain (2.10.1 Ma), Dizon (2.50.2 Ma) and Taysan (7.30.2 Ma). Microphenocrys-tic apatite in the late Cenozoic intermediate to silicic intrusions associated with porphyry Cu deposits in the western Luzon arc contains sulfur as SO3 detectable by electron probe microanalyzer. Sulfur is supposed to have been accommodated dominantly as oxidized species in oxidizing hydrous magmas that generated porphyry Cu deposits. Likewise, such high SO3 contents in microphenocrystic apatite are common characteristics of the intermediate to silicic magmatism of the western Luzon arc, from tonalitic rocks of the Luzon Central Cordillera of about 15 Ma to an active magmatism at Mount Pinatubo. Thus, the western Luzon arc has been generating porphyry Cu mineralization associated with oxidizing hydrous intermediate to silicic magmatism related to eastward subduction, since Miocene to the present day. Intermediate to silicic rocks since 15 Ma to present-day western Luzon arc generally show high whole-rock Sr/Y ratio ranging from 20 to 184. However, porphyry Cu deposit is not necessarily related to the rocks that show higher Sr/Y ratios compared to the other barren rocks in the western Luzon arc. The characteristics of the intermediate to silicic magma associated with porphyry Cu deposit are not attributed to the composition of the source material of the magma, but to the properties defined by the high activity of oxidized species of sulfur in the fluid phase that is encountered during the generation of intermediate to silicic magmas.  相似文献   
24.
Aeromagnetic signatures over the Edward VII Peninsula (E7) provide new insight into the largely ice-covered and unexplored eastern flank of the Ross Sea Rift (RSR). Positive anomalies, 10–40 km in wavelength and with amplitudes ranging from 50 to 500 nT could reveal buried Late Devonian(?)–Early Carboniferous Ford Granodiorite plutons. This is suggested by similar magnetic signature over exposed, coeval Admiralty Intrusives of the Transantarctic Mountains (TAM). Geochemical data from mid-Cretaceous Byrd Coast Granite, contact metamorphic effects on Swanson Formation and hornblende-bearing granitoid dredge samples strengthen this magnetic interpretation, making alternative explanations less probable. These magnetic anomalies over formerly adjacent TAM and western Marie Byrd Land (wMBL) terranes resemble signatures typically observed over magnetite-rich magmatic arc plutons. Shorter wavelength (5 km) 150 nT anomalies could speculatively mark mid-Cretaceous mafic dikes of the E7, similar to those exposed over the adjacent Ford Ranges. Anomalies with amplitudes of 100–360 nT over the Sulzberger Bay and at the margin of the Sulzberger Ice Shelf likely reveal mafic Late Cenozoic(?) volcanic rocks emplaced along linear rift fabric trends. Buried volcanic rock at the margin of the interpreted half-graben-like “Sulzberger Ice Shelf Block” is modelled in the Kizer Island area. The volcanic rock is marked by a coincident positive Bouguer gravity anomaly. Late Cenozoic volcanic rocks over the TAM, in the RSR, and beneath the West Antarctic Ice Sheet exhibit comparable magnetic anomaly signature reflecting regional West Antarctic Rift fabric. Interpreted mafic magmatism of the E7 is likely related to mid-Cretaceous and Late Cenozoic regional crustal extension and possible mantle plume activity over wMBL. Magnetic lineaments of the E7 are enhanced in maximum horizontal gradient of pseudo-gravity, vertical derivative and 3D Euler Deconvolution maps. Apparent vertical offsets in magnetic basement at the location of the lineaments and spatially associated mafic dikes and volcanic rocks result from 2.5D magnetic modelling. A rift-related fault origin for the magnetic lineaments, segmenting the E7 region into horst and graben blocks, is proposed by comparison with offshore seismic reflection, marine gravity, on-land gravity, radio-echo sounding, apatite fission track data and structural geology. The NNW magnetic lineament, which we interpret to mark the eastern RSR shoulder, forms the western margin of the “Alexandra Mountains horst”. This fundamental aeromagnetic feature lies on strike with the Colbeck Trough, a prominent NNW half-graben linked to Late Cretaceous(?) and Cenozoic(?) faulting in the eastern RSR. East–west and north–north–east to NE magnetic trends are also imaged. Magnetic trends, if interpreted as reflecting the signature of rift-related normal faults, would imply N–S to NE crustal extension followed by later northwest–southeast directed extension. NW–SE extension would be compatible with Cenozoic(?) oblique RSR rifting. Previous structural data from the Ford Ranges have, however, been interpreted to indicate that both Cretaceous and Cenozoic extensions were N–S to NE–SW directed.  相似文献   
25.
Abstract The initial volcanic phase of Cretaceous island arc strata in central Puerto Rico, at the eastern end of the extinct Greater Antilles Arc, comprises a 6‐km thick pile of lava and volcanic breccia (Río Majada Group). Preserved within the sequence is a conspicuous shift in absolute abundances of the more incompatible elements, including Th, Nb, and the light rare earth elements (LREE: La, Ce, Pr and Nd). The compositional shift is marked by a decrease in La/Sm from averages of 2.11 in the lowest third of the pile (Formation A) to 1.48 at the top (Formation C), and by a distinctive flattening of LREE segments of chondrite‐normalized REE patterns. i87Sr/86Sr and ?Nd average about 0.7035 and 8.2, respectively, in early Formation A basalts. These ranges normally overlap samples from later Formations B and C. Isotope compositions of the latter group are more variable, however, and several samples are considerably more radiogenic than Formation A basalts, such that i87Sr/86Sr averages almost 0.7042 while ?Nd‐values decrease to 7.5 in Formation B and C basalts. Theoretical models of non‐modal melting processes in both amphibole peridotite and spinel lherzolite sources provide insight into the origin of depleted Th, Nb, and LREE abundances in Puerto Rican basalts. Low Nb concentrations less than normal mid‐oceanic ridge basalts in Formation A basalts indicate the wedge was slightly depleted by low‐volume decompression fusion due to induced convection in the back‐arc region prior to entry of the source into the arc melting zone. However, depleted patterns in Formation C basalts cannot be generated by relatively greater degrees of decompression fusion in the back‐arc, because addition of the La‐enriched slab‐derived component to more depleted source material invariably produces elevated rather than decreased La/Sm. Refluxing of Formation A harzburgitic residua is similarly precluded. In contrast, the observed patterns are readily reproduced by multistage melting models involving hybridized sources containing normal Formation A lherzolite source material blended with recycled, unrefluxed harzburgite residua. Successful models require hybrid sources containing large volumes of recycled harzburgite (up to 50%) during generation of Formation C basalts. Slightly elevated radiometric Sr and Nd isotopes in a few flows from Formation C are attributed to partial refluxing of the hybrid sources within the wedge.  相似文献   
26.
Shallow seismicity and available source mechanisms in the Andaman–westSunda arc and Andaman sea region suggest distinct variation in stressdistribution pattern both along and across the arc in the overriding plate.Seismotectonic regionalisation indicates that the region could be dividedinto eight broad seismogenic sources of relatively homogeneousdeformation. Crustal deformation rates have been determined for each oneof these sources based on the summation of moment tensors. The analysisshowed that the entire fore arc region is dominated by compressive stresseswith compression in a mean direction of N23°, and the rates ofseismic deformation velocities in this belt decrease northward from 5.2± 0.65 mm/yr near Nias island off Sumatra and 1.12 ±0.13 mm/yr near Great Nicobar islands to as much as 0.4 ±0.04 mm/yr north of 8°N along Andaman–Nicobar islandsregion. The deformation velocities indicate, extension of 0.83 ±0.05 mm/yr along N343° and compression of 0.19 ±0.01 mm/yr along N73° in the Andaman back arc spreadingregion, extension of 0.18 ± 0.01 mm/yr along N125° andcompression of 0.16 ± 0.01 mm/yr along N35° in NicobarDeep and west Andaman fault zone, compression of 0.84 ±0.12 mm/yr N341° and extension of 0.77 ± 0.11 mm/yralong N72° within the transverse tectonic zone in the Andamantrench, N-S compression of 3.19 ± 0.29 mm/yr and an E-Wextension of 1.24 ± 0.11 mm/yr in the Semangko fault zone ofnorth Sumatra. The vertical deformation suggests crustal thinning in theAndaman sea and crustal thickening in the fore arc and Semangko faultzones. The apparent stresses calculated for all major events range between0.1–10 bars and the values increase with increasing seismic moment.However, the apparent stress estimates neither indicate any significantvariation with faulting type nor display any variation across the arc, incontrast to the general observation that the fore arc thrust events showhigher stress levels in the shallow subduction zones. It is inferred that theoblique plate convergence, partial subduction of 90°E Ridge innorth below the Andaman trench and the active back arc spreading are themain contributing factors for the observed stress field within the overridingplate in this region.  相似文献   
27.
28.
藏北新生代两套钾玄质火山岩系列地球化学特征   总被引:8,自引:2,他引:8  
岩石学和元素地球化学特征研究表明,藏北新生代自南向北沿可可西里岩带和喀喇昆仑—玉门岩带出露有两套钾玄质系列火山岩。它们富集大离子亲石元素(LILE)和轻稀土(LREE)及明显亏损Nb—Ta—Ti,同时具有板内和岛弧(陆弧)的双重特征。源区来源于可能与俯冲带流体有关的相似交代富集地幔,成岩过程主要经历了低度(<10%)辉石分离结晶作用,同时,源区伴有地壳物质的混染作用。  相似文献   
29.
Merapi Volcano (Central Java, Indonesia) has been frequently active during Middle to Late Holocene time producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from 1900 14C yr BP to the present. Radiocarbon dating of pyroclastic deposits indicates an almost continuous activity with periods of high eruption rates alternating with shorter time spans of distinctly reduced eruptive frequency since the first appearance of high-K volcanic rocks. Geochemical data of 28 well-dated, prehistoric pyroclastic flows of the Merapi high-K series indicate systematic cyclic variations. These medium-term compositional variations result from a complex interplay of several magmatic processes, which ultimately control the periodicity and frequency of eruptions at Merapi. Low eruption rates and the absence of new influxes of primitive magma from depth allow the generation of basaltic andesite magma (56–57 wt% SiO2) in a small-volume magma reservoir through fractional crystallisation from parental mafic magma (52–53 wt% SiO2) in periods of low eruptive frequency. Magmas of intermediate composition erupted during these stages provide evidence for periodic withdrawal of magma from a steadily fractionating magma chamber. Subsequent periods are characterised by high eruption rates that coincide with shifts of whole-rock compositions from basaltic andesite to basalt. This compositional variation is interpreted to originate from influxes of primitive magma into a continuously active magma chamber, triggering the eruption of evolved magma after periods of low eruptive frequency. Batches of primitive magma eventually mix with residual magma in the magmatic reservoir to decrease whole-rock SiO2 contents. Supply of primitive magma at Merapi appears to be sufficiently frequent that andesites or more differentiated rock types were not generated during the past 2000 years of activity. Cyclic variations also occurred during the recent eruptive period since AD 1883. The most recent eruptive episode of Merapi is characterised by essentially uniform magma compositions that may imply the existence of a continuously active magma reservoir, maintained in a quasi-steady state by magma recharge. The whole-rock compositions at the upper limit of the total SiO2 range of the Merapi suite could also indicate the beginning of another period of high eruption rates and shifts towards more mafic compositions.  相似文献   
30.
Abstract A controversial stratigraphic section, the Taneichi Formation, is exposed along the Pacific Coast of northeastern Honshu, the main island of the Japanese Archipelago. Although most sediments of the formation have long been dated as late Cretaceous, the northern section of it has been assigned to (i) the Upper Cretaceous; (ii) the Paleogene; or (iii) the Neogene. In the present report, we present the data of palynological and sedimentological studies, showing that the northern section should be assigned to the Neogene. A more important point in the present study is that we invoke some basic principles of fluvial sedimentology to resolve this stratigraphic subject. The lignite layers full of Paleogene–Miocene dinoflagellate cysts and pollen assemblages drape over the boulder‐sized (>40 cm in diameter) clasts in the northern section. However, the layers totally consist of aggregates of small lignite chips, indicating that the lignites are allochthonous materials. The mega‐clasts with derived microfossils in the lignites are thought to have been deposited as Neogene fluvial (flood) sediments in the newly formed Japanese Archipelago. Prior to the Miocene, the northern Honshu was part of the Eurasian Plate, thus the boulder‐sized clasts cannot be envisaged as long river flood deposits along the continental Paleogene Pacific Coast. Instead, the mega‐clasts with the draping lignites were probably derived from nearby Miocene highlands in the newly born island arc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号