Sedimentary successions and internal structure of the coastal barrier-lagoon system of Boao, eastern Hainan Island were studied through utilizing data from test holes and trenches and ground-penetrating-radar (GPR) profiles. During late Pleistocene, fluvial and delta plains developed over an unevenly eroded bedrock during low sea level stand, followed by the formation of littoral and lagoon facies and defined coastal barrier-lagoon-estuary system during the post-glacial uppermost Pleistocene-lower Holocene eustatic rise of the sea level, and the upper Holocene high stand. GPR results show that Yudaitan, a sandy coastal bar backed by a low-laying land (shoal) just east of the active lagoon, is a continuous, parallel and slightly-wavy reflectors indicating homogeneous sandy or sandy gravel sediments, and inclined reflectors partly caused by progradation and accumulation of beach sand and gravel. Quasi-continuous, hummocky and chaotic reflectors from the shoal of Nangang village correspond to mixed accumulation of sands and clay. This research indicates the GPR is a non-intrusive, rapid, and economical method for high-resolution profiling of subsurface sediments in sandy gravelly coast. 相似文献
Drill cores through modern coral reefs commonly show a time lag in reef initiation followed by a phase of rapid accretion to sea level from submerged foundations – the so-called ‘catch-up response’. But because of the difficulty of drilling in these environments, core distribution is usually restricted to accessible areas that may not fully represent reef history, especially if the reef initiated in patches or developed with a prograde or retrograde geometry. As a consequence, core data have the potential to give a misleading impression of reef development, particularly with respect to the timing of initiation and response to sea-level rise. Here, we use computer models to simulate keep-up reef development and, from them, quantify variations in the timing of reef initiation and accretion rate using mock cores taken through the completed simulations. The results demonstrate that cores consistently underestimate the timing of reef initiation and overestimate the reef accretion rate so that, statistically, a core through a keep-up reef will most likely produce a catch-up pattern – an initiation lag followed by a phase of rapid accretion to sea level. This implies that catch-up signatures may be an artefact of coring and that keep-up reefs are significantly more common than previous core studies claim. 相似文献
Field surveys indicate lateral variation in peat humification levels (von Post) in dominantly occurring fibric,fibric to hemic,sapric and hemie to sapric peats across a gradient from the margin towards the centre of tropical lowland peat domes.Cement-peat stabilisation can be enhanced by adding mineral soil fillers (silt,clays and fine sands) obtained from Quaternary floodplain deposits and residual soil (weathered schist).The unconfined compressive strength (UCS) of the stabilised cement-mineral soil fifler-peat mix increases with the increased addition of selected mineral soil filler.Lateral variation in the stabilised peat strength (UCS) in the top 0 to 0.5 m layer was found from the margin towards the centre of the tropical lowland peat dome.The variations in the UCS of stabilised tropical lowland peats along a gradient from the periphery towards the centre of the peat dome are most likely caused by a combination of factors due to variations in the mineral soil or ash content of the peat and horizontal zonation or lateral variation in the dominant species of the plant assemblages (due to successive vegetation zonation of the peat swamp forest from the periphery towards the centre of the tropical lowland peat dome). 相似文献