首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   77篇
  国内免费   30篇
大气科学   1篇
地球物理   20篇
地质学   314篇
海洋学   20篇
天文学   3篇
综合类   8篇
自然地理   53篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   8篇
  2017年   6篇
  2016年   11篇
  2015年   14篇
  2014年   13篇
  2013年   14篇
  2012年   13篇
  2011年   14篇
  2010年   23篇
  2009年   13篇
  2008年   13篇
  2007年   25篇
  2006年   9篇
  2005年   23篇
  2004年   13篇
  2003年   14篇
  2002年   16篇
  2001年   21篇
  2000年   23篇
  1999年   18篇
  1998年   11篇
  1997年   15篇
  1996年   11篇
  1995年   7篇
  1994年   9篇
  1993年   5篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
排序方式: 共有419条查询结果,搜索用时 15 毫秒
41.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
42.
A new species, Tsuga nanfengensis sp. nov. (Pinaceae), is described on the basis of lignified fossil wood from the late Miocene of the Xianfeng Basin, central Yunnan, southwestern China. Detailed observation of the fossil wood specimens show the following characteristics: distinct growth rings, absence of resin canals, uniseriate bordered pits in the radial wall of tracheids, ray tracheids and piceoid and cupressoid cross-field pits. These features indicate similarities to the wood of extant Tsuga canadensis, T. chinensis, and T. dumosa. According to the fossil record, Tsuga was present in Xundian County during the Miocene. Today Tsuga is drought intolerant, preferring wet conditions with no extant species growing naturally in Xundian County. The presence of Tsuga in the Miocene of Xundian County indicates a humid climate consistent with previous palaeoclimatic reconstructions showing a wetter and probably shorter dry season in the Miocene, relative to the present day. Therefore, the change in the local climate such as increasing aridity through the Miocene might explain the local extinction of Tsuga from central Yunnan.  相似文献   
43.
Travertine deposits in western Turkey are very well‐exposed in the area of Kocaba?, in the eastern part of the Denizli Basin. The palaeoclimatic significance of these travertines is discussed using U/Th dates, stable isotope data and palynological evidence. The Kocaba? travertine occurrences are characterized by successions of depositional terraces associated with palaeosols and karstic features. The travertines have been classified into eight lithotypes and one erosional horizon, namely: laminated, coated bubble, reed, paper‐thin raft, intraclasts, micritic travertine with gastropods, extra‐formational pebbles and a palaeosol layer. The analysed travertines mostly formed between 181 ka and 80 ka (Middle to Late Pleistocene) during a series of climatic changes including glacial and interglacial intervals; their δ13C and δ18O values indicate that the depositional waters were mainly of basinal thermal origin, occasionally mixed with surficial meteoric water. Palynological results obtained from the palaeosols showed an abundance of non‐arboreal percentage and xerophytic plants (Oleaceae and Quercus evergreen type) indicating that a drought occurred. Marine Isotope Stage 6 is represented by grassland species but Marine Isotope Stage 5 is represented by Pinaceae–Pinus and Abies, Quercus and Oleaceae. Uranium/thorium analyses of the Kocaba? travertines show that deposition began in Marine Isotope Stage 6 (glacial) and continued to Marine Isotope Stage 4 (glacial), but mostly occurred in Marine Isotope Stage 5 (interglacial). The travertine deposition continued to ca 80 ka in the south‐west of the study area, in one particular depression depositional system. Palaeoenvironmental indicators suggest that the travertine depositional evolution was probably controlled by fault‐related movements that influenced groundwater flow. Good correlation of the stable isotope values and dates of deposition of the travertines and palynological data of palaeosols in the Kocaba? travertines serve as a starting point for further palaeoclimate studies in south‐west Turkey. Additionally, the study can be compared with other regional palaeoclimate archives.  相似文献   
44.
45.
The 4.45 m-thick pure ice lens have been discovered firstly at depth from 19.81 -24.26 m in the bore No.6, which locates in north bank of the Ngoring Lake. In source region of the Huanghe (Yellow) River, 14C dating, X -ray diffraction, pollen analysis, micropalaeontology, chemical components, environmental isotope 2H, 3H, 18O and freezing point of the ice and water samples from the bore have been tested and microorganism in the ice have been also appraised with microscope. Combined with the research on geomorphy and Quaternary around the lake, the ice lens are determined as a kind of deep-buried lake ice, formed in 35,030-45,209 yr.B.P., and annual mean air temperature was about -10℃ during that time.  相似文献   
46.
This study investigated Holocene tree‐line history and climatic change in the pre‐Polar Urals, northeast European Russia. A sediment core from Mezhgornoe Lake situated at the present‐day alpine tree‐line was studied for pollen, plant macrofossils, Cladocera and diatoms. A peat section from Vangyr Mire in the nearby mixed mountain taiga zone was analysed for pollen. The results suggest that the study area experienced a climatic optimum in the early Holocene and that summer temperatures were at least 2°C warmer than today. Tree birch immigrated to the Mezhgornoe Lake area at the onset of the Holocene. Mixed spruce forests followed at ca. 9500–9000 14C yr BP. Climate was moist and the water level of Mezhgornoe Lake rose rapidly. The hypsithermal phase lasted until ca. 5500–4500 14C yr BP, after which the mixed forest withdrew from the Mezhgornoe catchment as a result of the climate cooling. The gradual altitudinal downward shift of vegetation zones resulted in the present situation, with larch forming the tree‐line. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
47.
A peat bed found under solifluction deposits on Godøya island, western Norway, accumulated during a few decades around 11 000 yr BP, at the end of the Allerød period of the Late Weichselian. Palaeoecological investigations showed a local vegetation succession on wet sand culminating in a mire community dominated by Carex nigra. Periodic flooding brought in sand and silt, which decreased as drainage was impeded sufficiently for standing water to develop. The surrounding terrestrial vegetation was dominated by Salix scrub, with some open heath and alpine habitats nearby. Apart from two aquatic species, the 29 insect taxa recorded are characteristic of alpine heaths, plant litter (under Salix scrub) and stream-sides. Their remains, together with the terrestrial plant macrofossils, were washed into the mire from nearby. Because the fossils are locally derived, the environmental reconstructions are of the actual conditions at Godøy at ca. 11 000 yr BP. Palaeotemperature estimates from beetles and plants are in agreement. The coleopteran estimates (Mutual Climatic Range Method) suggest mean July temperatures of 10–13°C, slightly cooler than today (13.5°), and January temperatures between +1 and ?10°C, similar to or much colder than today. Summer temperature estimates from individual plant taxa indicate that temperatures during the Allerød period were similar to today's, but estimates from the reconstructed vegetation and timber-line positions give estimates up to 3.5° cooler. Temperatures fell 2.5–7.5°C at the Younger Dryas. This abrupt and severe cooling initiated the solifluction processes on Godøya that buried the peat. The Godøy peat bed and its contained fossils provide a rare glimpse of Allerød biota and environments at the local (site) scale.  相似文献   
48.
The importance of calcimicrobes and microbialite in carbonate platform and reefal environments has been stressed in recent literature. Burne and Moore[1] introduced the term microbialite to describe the clotted, laminated and undifferentiated fabrics formed by mi-crobial communities. Microbialites are organosedi-mentary deposits that have accreted as a result of ben-thic (prokaryotic or eukaryotic) communities, trapping and binding detrital sediment[1]. Microbial organisms and microbialite are…  相似文献   
49.
Forster等依据与δ18O无关的TEX86值来推算古温度的方法,获得了中白垩世(阿尔布期—三冬期)的表层海水温度(SST)记录。中白垩世期间,南美Demerara海隆位于热带大西洋西部,从赛诺曼期SST逐步升高(达31℃—35℃),至赛诺曼期-土仑期界线附近,SST的最高值明显高过35℃;土仑期内出现两次变凉事件(降温约2℃—3℃),打断了中白垩世稳定变暖的趋势;康尼亚克期,SST逐步下降,至三冬期降到了最低值(约32℃—33℃)。这一研究结果表明,在地质时期内,尽管中白垩世代表了典型的温室气候,但仍然很不稳定。驱动气候变化的因素是综合的,主要受地轴与地球赤道间的夹角变化、太阳辐射程度,及地球深部物质和构造运动等因素的影响,其他孤立的事件则很难影响全球性气候变化。气候的变化影响着生物的演化,古气候是研究重大地质事件的重要参数,古生物为研究古气候的最主要的标志之一。  相似文献   
50.
New 10Be dates for glacial landforms in the Fuentes Carrionas area (Cantabrian Mountains, nothern Spain) are presented. Mapped and dated landforms in Fuentes Carrionas made possible a palaeoglacier reconstruction for four glacial stages. Results were compared to other nearby palaeoenvironmental proxies, so a final approximation on the mean annual temperature and annual precipitation that caused the four glacial advance stages is proposed. Glaciers reached their maximum extension at 36 ka, in a cold and dry environment. A second advance stage took place between 18.5 and 19.5 ka, during the Last Glacial Maximum (LGM), when glaciers advanced in a wet environment, with positive rainfall anomalies. A third glacial advance was dated during the Oldest Dryas, in which climate shifted to extremely cold and dry conditions. Finally, a last stage has been identified and proposed to the Younger Dryas, in which precipitation anomalies are negligible. Our results confirm some of the previously made palaeoglacial and palaeoenvironmental inferences for the Iberian Peninsula, as well as provide valuable and accurate anomalies, which are useful for climate modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号