首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   9篇
  国内免费   27篇
地球物理   10篇
地质学   89篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2021年   3篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1980年   1篇
排序方式: 共有101条查询结果,搜索用时 0 毫秒
71.
西南三江地区造山演化过程及成矿时空分布   总被引:16,自引:0,他引:16  
骆耀南  俞如龙 《地球学报》2002,23(5):417-422
三江地区单凭"一次造山"是难以圆满解释的,在此试以"多次造山"和"多期成矿"的思路作出合理的说明.晚古生代-中生代早期为多岛海造山阶段,羌塘弧、江达弧和临沧弧应为前锋弧,其后由一系列弧后盆地和岛弧或残余弧(微大陆)组成.中生代中-晚期为陆内俯冲造山阶段,推测金沙江带、哀牢山带和龙门山-锦屏山带为俯冲主边界,从而形成该区燕山期重熔型花岗岩带,并控制相应矿产的分布特征.新生代陆内转换造山阶段造成具特征的构造-岩浆-成矿带,具有生成大型或超大型矿床的潜力.  相似文献   
72.
马永非  刘永江  秦涛  孙巍  臧延庆 《岩石学报》2018,34(10):2931-2955
本文通过对大兴安岭中段扎赉特旗地区石炭纪花岗岩进行岩石学、年代学及地球化学分析,揭示其岩石成因、形成的构造背景及对增生造山作用的指示。早、晚石炭世二长花岗岩形成年龄依次为334Ma(早石炭世中期)与316Ma(晚石炭世早期)。早石炭世二长花岗岩具有较高的Si O2及Al2O3含量,铝指数均大于1. 1,为强过铝质S型花岗岩。相对较低的Rb/Ba及Rb/Sr比值反映出砂屑岩等贫泥质成分岩石为其原始岩浆的形成提供了物质来源,不同岩石类型脱水熔融实验也证明其成岩岩浆来源于变沉积岩的部分熔融。大量正的εHf(t)值和较为年轻的二阶段模式年龄(tDM2=637~1048Ma)说明原始成岩岩浆来源于较为年轻的下地壳物质的部分熔融。少量负的εHf(t)值和较为古老的二阶段模式年龄(tDM2=1268~1863Ma),说明成岩岩浆中也有少量古老前寒武纪壳源物质的参与。锆石饱和温度计算表明岩石的岩浆结晶温度在800~850℃之间。晚石炭世二长花岗岩富集轻稀土元素及Rb、Ba、U、K等大离子亲石元素,亏损重稀土元素,具有未分异I型花岗岩的特征。其岩浆来源于石榴子石稳定区之上,具中等地壳深度的变玄武岩部分熔融。同时其正的εHf(t)值(2. 1~8. 9)和较为年轻的二阶段模式年龄(tDM2=701~1094Ma)说明年轻下地壳物质也参与了原始岩浆的形成。岩浆演化过程中结晶分异作用较差,熔融作用发生于H2O不饱和的条件下。早石炭世二长花岗岩形成于碰撞后构造环境,说明兴安地块与松嫩地块最晚在早石炭世中期之前已经开始碰撞缝合。晚石炭世二长花岗岩的形成则与古洋盆闭合之后碰撞拼贴板块之间因造山作用而引发的"后碰撞"相关。中亚造山带在新元古代至寒武纪及晚古生代时期均经历了重要的地壳增生事件,除水平增生外,垂向增生也是一种重要增生方式,增生机制主要通过"二阶段增生"模式实现。前期俯冲板片的断离下沉或下地壳的拆沉作用导致的幔源岩浆上升在增生过程中起到了重要作用,不仅提供了热量,而且提供了新的物质来源。  相似文献   
73.
纸房花岗岩体位于新疆东准噶尔卡拉麦里构造带北侧。该岩体侵入的最新地层为中-上奥陶统荒草坡群, 并被晚志留世及早泥盆世地层不整合覆盖。对纸房花岗岩进行锆石SHRIMP U-Pb定年, 获得的206Pb/238U加权平均年龄为(463±7)~(436±4) Ma, 表明该岩体形成于晚奥陶世-早志留世, 是早古生代岩浆活动的产物。对已有的区域地质资料、岩体侵位时代及其与围岩接触关系进行综合分析后认为, 纸房花岗岩体的形成时代大致对应于卡拉麦里构造带内区域性角度不整合的形成时间, 推测该岩体为早古生代造山过程中形成的花岗质岩石。高Sr、低Yb、弱的Eu负异常等地球化学特征也显示其为埃达克型同造山花岗岩。纸房地区早古生代同造山花岗岩的存在为东准噶尔卡拉麦里构造带早古生代造山作用的确认提供了证据。   相似文献   
74.
楚雄前陆盆地的充填层序与造山作用   总被引:3,自引:2,他引:3       下载免费PDF全文
楚雄盆地是一中生代前陆盆地,发展过程有两个阶段:晚三叠世卡尼期至诺利期为前陆复理石充填期;诺利晚期至瑞替期为前陆磨拉石充填期。相应的形成两个二级层序和四个三级层序。层序的构型显然与造山过程耦合。哀牢山前缘逆冲带推进的速度控制着楚雄盆地基底挠曲幅度,因而决定了盆地的沉降率;逆冲带隆升幅度则决定了陆源区的物源供给量。由于可容空间和物源供给率是控制盆地层序地层格架的两个基本因素,因此前陆逆冲载荷的迁移就是控制层序地层的关键。作者以盆地中的充填层序反馈哀牢山造山作用的特点和过程:早、中期,盆地中以向上变深的二级沉积层序代表了哀牢山逆冲的初始价段,逆冲载荷达到盆地拉张变薄的基底上,前陆挠曲幅度大,造山带抬升的相对高度较低。晚期,盆地中以向上变浅的二级沉积层序代表了逆冲载荷推进到克拉通基底上,地壳挠曲受阻,物源供给量加大。三级沉积层序的相互叠置则反映了造山带多幕次、多周期活动的特点。  相似文献   
75.
The earth tide is usually ignored in orogenesis (geosynclinal activity) and magmatic activity. We believe that the role of earth tide in crustal movement should not be ignored. The elemental dynamic analysis of origin of magma chamber under dissipative tidal heating model and orogenic process driven by alternating earth tidal force is depicted. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 508–513, 1993. Xue-Min AI and Liang CHI also worked for this project. This work was supported by the Laboratory of Dynamical Geodesy, Academia Sinica. Translated from Chinese into English by Liang CHI.  相似文献   
76.
略论华北地块北缘显生宙三类不同的造山作用   总被引:3,自引:0,他引:3  
华北地块北缘显生宙发育3种不同类型的造山作用。古生代,华北地块北缘处于古亚洲洋构造域,造山作用属陆缘俯冲-碰撞型,形成以EW向至NEE向为主的褶皱、逆冲推覆构造及韧性剪切带等构造类型。造山机制与古亚洲洋板块向南俯冲-碰撞导致近SN向构造动力的挤压作用密切相关。中生代,华北地块北缘处于西滨太平洋构造域,造山作用以陆内挤压型为主,形成以NE-NNE向与近EW向为主的多期不同方向的褶皱、逆冲断裂、推覆构造、韧性剪切带及局部地区的固态塑性流变构造等构造类型;造山动力以古太平洋(或Izanagi)板块西向俯冲导致NW-NWW向强烈挤压力为主。新生代,华北地块北缘虽仍属西滨太平洋构造域,但造山作用以陆内伸展型为主,裂谷作用与陆内伸展构造居主导地位,褶皱变形微弱,张性-张扭性断裂活动显著,形成现今盆-山构造地貌格局;造山动力以NW-NWW向主张应力为主。造山类型的两次重大转换分别发生于早、中三叠世与晚白垩世。  相似文献   
77.
晚古生代一三叠纪是秦岭造山带主造山作用的碰撞造山期,其中石炭二叠纪是点接触至面接触碰撞的阶段。华北石炭二叠纪发育有4次较大规模的海侵,时代分别为C12-C21-1,C21-2-C22,P21和P31。岩相古地理制图及海侵沉积单元空间展布规律的分析结果表明,海侵来自华北地块南侧的秦岭残余海盆,且海侵具有由东向西逐渐推进之势。这一海侵过程是受华北地块东低西高的古地理格局及秦岭造山带以小秦岭地区为中心呈双剪刀状反向穿时碰撞造山作用控制的结果。  相似文献   
78.
G. Musumeci 《Geodinamica Acta》2013,26(1-2):119-133
Abstract

The Monte Grighini Complex (Central-Western Sardinia) is a NW-SE trending metamorphic complex of Hereynian age made up of a medium grade Lower tectonic unit with mylonitie granitoids and a low grade Upper tectonic unit exposed in the westernmost and southernmost portions of this complex. The Lower Unit shows a prograde metamor phism from garnet to sillimanite zone and the transition from MP/MT to LP/HT metamorphism. The metamorphic climax was reached at the end of the main deformative phase 1)2 (600° C. 6 kbar). After the main tectonic and metamorphic phase. the Lower Unit was affected by a wide NW-SE trending ductile dextral wrench shear zone. Intrusive rocks emplaced within the shear zone yielded radiometric ages of 305-300 Ma. Shear deformation leads to low temperature C-S mylonites and retrograde phyllonitic rocks with subhorizontal NW-SE trending stretching lineations. Kinematic analysis of the shear zone points to a dextral sense of shear with an amount of ductile displacement of about 7 km. Later low angle N-S and E-W trending normal faults are associated with cataclastic zones separating the Lower Unit from the Upper one. These faults originated during a later evolutionary stage of the shear zone. This shows a progressive change of deformation regime from duetile wrenching to brittle normal faulting. The Monte Grighini Complex is a good example of ductile wrench tectonics. followed by uplift and extension in the Paleozoic basement of Sardinia.  相似文献   
79.
A Lower Ordovician age for the Oughterard Granite is established by Rb–Sr dating of magmatic white micas from pegmatites cutting two of the satellite bodies found 12–15 km west of the main granitic intrusions. These micas give a minimum age of c. 473 Ma for the emplacement of the satellite bodies, and for the completion of the D3 deformation in the Dalradian host rocks. The main granite intrusions are post-D4 in age, but some of the small outlying sheet-like intrusions are either deformed by D4 folds, or were present during this deformation and were responsible for the development of locally disharmonic D4 minor folds. The correlation of the smaller granite bodies with the main bodies of Oughterard Granite is supported by their similar field appearance, petrography and trace element geochemistry. In common with other late orogenic granites, such as the 470 Ma Aberdeen Granite in NE Scotland, the Oughterard Granite is thought to have been part of a discontinuous magmatic arc, which formed along the southern margin of the Dalradian outcrop in Connemara and in NE Scotland in the early Ordovician. Members of the Oughterard Granite suite were emplaced during the final stages of the Grampian orogeny, from post-D3 to post-D4, while the country rocks were still at an elevated temperature (>500°C) following the peak of the regional metamorphism. The new minimum age of intrusion of c. 473 Ma, together with existing radiometric data, confirms that emplacement of the metagabbro and gneiss complex in southern Connemara, followed by the D3 structural and metamorphic events, all took place during a period of less than 20 Ma. © 1997 John Wiley & Sons, Ltd.  相似文献   
80.
The Jindabyne Thrust has been mapped south of Lake Eucumbene, along the eastern side of Lake Jindabyne and thence southwards to the gorge of the Snowy River in Byadbo Lands. It is marked by a crush zone and a west‐facing scarp. Structure contours on the Thrust where it enters the gorge of the Snowy River in the Byadbo region indicate an easterly dip of about 20°.

The north‐south erosional valley now occupied by Lake Jindabyne is controlled by the Thrust and the gorge below the Jindabyne Dam has been rejuvenated by recent movement.

The nature of the Jindabyne Thrust and other faults in the Jindabyne‐Berridale region can be deduced from their effects on the Silurian granitoid plutons. Where a pluton, circular or elliptical in plan and with vertical walls, is transected by a thrust, a semi‐elliptical or semi‐circular shape results; granitoid rock types cannot be matched across the fault. Wrench faults in the region either curve into or are transected by the thrusts, depending upon the geometrical relationships of both.

It is suggested that the north‐south dividing line between granitoids derived from igneous rocks (I‐types) to the east and granitoids derived from metasedimentary rocks (S‐types) to the west is a major tectonic feature of eastern Australia. The line coincides with a transition from a regime where wrench faulting predominates to one dominated by thrust faulting. These changes in both tectonics and granitoid lithology suggest that the I‐S line marks the eastern boundary of crystalline basement, possibly of Precambrian age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号