首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1643篇
  免费   241篇
  国内免费   274篇
测绘学   291篇
大气科学   166篇
地球物理   449篇
地质学   622篇
海洋学   315篇
天文学   77篇
综合类   131篇
自然地理   107篇
  2024年   14篇
  2023年   17篇
  2022年   31篇
  2021年   47篇
  2020年   52篇
  2019年   57篇
  2018年   45篇
  2017年   77篇
  2016年   77篇
  2015年   47篇
  2014年   78篇
  2013年   104篇
  2012年   93篇
  2011年   99篇
  2010年   98篇
  2009年   100篇
  2008年   97篇
  2007年   126篇
  2006年   87篇
  2005年   79篇
  2004年   65篇
  2003年   82篇
  2002年   62篇
  2001年   38篇
  2000年   55篇
  1999年   54篇
  1998年   53篇
  1997年   35篇
  1996年   37篇
  1995年   35篇
  1994年   49篇
  1993年   31篇
  1992年   22篇
  1991年   18篇
  1990年   22篇
  1989年   34篇
  1988年   12篇
  1987年   13篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   2篇
  1973年   2篇
排序方式: 共有2158条查询结果,搜索用时 0 毫秒
1.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
Evidence is presented of a lateral variation in differential stress during metamorphism along a regional metamorphic belt on the basis of the proportion of microboudinaged piemontite grains (p) in a quartz matrix in metacherts. It is proposed that p is a practical indicator of relative differential stress. Analysis of 123 metacherts from the 800 km long Sambagawa metamorphic belt, Japan, reveals that p‐values range from < 0.01 to 0.7 in this region. Most samples from Wakayama in the mid‐belt area have p‐values of 0.4–0.6, whereas those from western Shikoku have p‐values of < 0.1. This difference cannot be explained by variations in metamorphic temperature, and is instead attributed to a regional, lateral variation in differential stress during metamorphism.  相似文献   
4.
A new form of generalized Boussinesq equations for varying water depth   总被引:1,自引:0,他引:1  
M. Zhao  B. Teng  L. Cheng 《Ocean Engineering》2004,31(16):597-2072
A new set of equations of motion for wave propagation in water with varying depth is derived in this study. The equations expressed by the velocity potentials and the wave surface elevations include first-order non-linearity of waves and have the same dispersion characteristic to the extended Boussinesq equations. Compared to the extended Boussinesq equations, the equations have only two unknown scalars and do not contain spatial derivatives with an order higher than 2. The wave equations are solved by a finite element method. Fourth-order predictor–corrector method is applied in the time integration and a damping layer is applied at the open boundary for absorbing the outgoing waves. The model is applied to several examples of wave propagation in variable water depth. The computational results are compared with experimental data and other numerical results available in literature. The comparison demonstrates that the new form of the equations is capable of calculating wave transformation from relative deep water to shallow water.  相似文献   
5.
P. Bonneton   《Ocean Engineering》2007,34(10):1459-1471
In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the simplified one-way model, with spilling wave breaking experiments and we find a good agreement.  相似文献   
6.
A model for solving the two-dimensional enhanced Boussinesq equations is presented. The model equations are discretised in space using an unstructured finite element technique. The standard Galerkin method with mixed interpolation is applied. The time discretisation is performed using an explicit three-step Taylor–Galerkin method. The model is extended to the surf and swash zone by inclusion of wave breaking and a moving boundary at the shoreline. Breaking is treated by an existing surface roller model, but a new procedure for the detection of the roller thickness is devised. The model is verified using four test cases and the results are compared with experimental data and results from an existing finite difference Boussinesq model.  相似文献   
7.
针对GPS定位测量的信号传播路径误差,分析了电离层电子浓度总含量梯度对差分定位精度的影响,利用L1载波重点讨论了1999年-2000年太阳活动期间低纬度赤道异常地区GPS差分定位精度的问题,同时验证对于长基线采用GPS广域差分技术可以使电离层定位误差得到明显提高。  相似文献   
8.
指出了共线条件方程式教学中应注意的一些问题:共线条件方程式是联立的两个平面方程式,存在双主距(fx,fy)时的几何概念,以及它的变换式与直接线性变换关系式的异同点。  相似文献   
9.
Zones of increased concentration formed by a solvent flowing from a source are considered. A matehmatical model for forming such zones is proposed. It takes into account that such a zone is composed of a set of independent particles. Hence the distribution of a substance around the source can be explained by movement of an individual particle. In the model this movement is a continuous semi-Markov process with terminal stopping at some random point in space. Parameters of the process depend on the velocity field of the flow. Forward and backward partial differential equations for the distribution density of a random stopping point of the process are derived. The forward equation is investigated for the centrally symmetric case. Solutions of the equation demonstrate either a maximum or a local minimum at the source location. In the latter case a concentric ring around the source is formed. If different substances vary in their absorption rates, they can form separable concentration zones as a family of concentric rings.  相似文献   
10.
Curvature analysis of triangulated surfaces in structural geology   总被引:6,自引:0,他引:6  
This paper addresses the problem of characterizing the shape of a geological surface on the basis of its principal curvatures. The surface is assumed to be modeled as a set of adjacent triangles defined by the location of their vertices and a method is proposed for estimating numerically the principal curvatures at the vertices of the triangles using a local C2 interpolant. Also shown is how principal curvatures can be useful for studying the deformation of a geological surface (with application to 3D balanced unfolding), and analyzing the folding or faulting of the interface between two adjacent layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号