首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   145篇
  国内免费   88篇
测绘学   119篇
大气科学   19篇
地球物理   186篇
地质学   280篇
海洋学   41篇
天文学   9篇
综合类   63篇
自然地理   177篇
  2024年   2篇
  2023年   3篇
  2022年   17篇
  2021年   32篇
  2020年   29篇
  2019年   44篇
  2018年   35篇
  2017年   40篇
  2016年   27篇
  2015年   42篇
  2014年   35篇
  2013年   47篇
  2012年   49篇
  2011年   41篇
  2010年   35篇
  2009年   46篇
  2008年   32篇
  2007年   55篇
  2006年   41篇
  2005年   22篇
  2004年   30篇
  2003年   25篇
  2002年   30篇
  2001年   9篇
  2000年   23篇
  1999年   9篇
  1998年   17篇
  1997年   16篇
  1996年   12篇
  1995年   6篇
  1994年   8篇
  1993年   9篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1985年   1篇
  1979年   2篇
  1954年   1篇
排序方式: 共有894条查询结果,搜索用时 15 毫秒
81.
The drainage evolution and valley development of the Jinsha River is an important issue constantly concerned by researchers in geology and geomorphology. Despite hundreds of years of research, there is a big dispute on the formation time and the evolution process of the fluvial valley. Fluvial terraces are very important geomorphic markers for studying the formation and evolution of the fluvial valley. Through field investigation combined with Electron Spin Resonance (ESR) dating, we confirmed that 5 fluvial terraces were formed, and then preserved, along the course of the Jinsha River near the Longjie, which are all strath terraces. Among them, T5 developed on the base rock, with an age of (78±12) ka; all T4~T1 developed on the lacustrine sediments, named Longjie Group by Chinese, with an age of (29±1.4) ka, (26±2.4) ka, (23±1.4) ka, (18±1.7) ka, respectively. Compared with the global and regional climate change history, the terraces are all the result of the river responding to the climate change. T5 formed at MIS 5/4, and T4~T1 formed at the period of regional climate fluctuation. The relationship of terraces and the Longjie Formation, combined with sedimentary characteristics analysis demonstrate that the Longjie Formation is landslide dammed lake sediment. The landslide and blocking events.seriously influenced the valley evolution, inhibiting the river incising, and making the valley evolution defer to the mode of “cut-landside-damming-fill-cut” in the period of Late Pleistocene. Synthesized studies of the terraces and the correlative sediments indicate that the formation of the Jinsha River valley may have begun in the late Early Pleistocene.  相似文献   
82.
Developments in dating techniques applicable to the late Tertiary and Quaternary are giving us the ability to date past land surfaces. Where reasonable assumptions about the nature of such past surfaces and their partial preservation may be made, they can be reconstructed. This permits the contouring and measurement of the subsequent dissection, allowing not only calculation of the average rate of erosion over the elapsed time, but also information on the pattern of incision. Two examples where this has been attempted are present; both are dissected till surfaces in eastern England, one of Anglian and the other of Devensian age. The approach quantifies the disparity between the incision of valleys and the general denudational lowering of the surface which characterizes many landscapes. The technique is not only of academic interest, but potentially forms a useful line of approach to the assessment of the safety of the burying toxic wastes. © 1997 by John Wiley & Sons, Ltd.  相似文献   
83.
Slip rate is one of the most important parameters in quantitative research of active faults. It is an average rate of fault dislocation during a particular period, which can reflect the strain energy accumulation rate of a fault. Thus it is often directly used in the evaluation of seismic hazard. Tectonic activities significantly influence regional geomorphic characteristics. Therefore, river evolution characteristics can be used to study tectonic activities characteristics, which is a relatively reliable method to determine slip rate of fault. Based on the study of the river geomorphology evolution process model and considering the influence of topographic and geomorphic factors, this paper established the river terrace dislocation model and put forward that the accurate measurement of the displacement caused by the fault should focus on the erosion of the terrace caused by river migration under the influence of topography. Through the analysis of the different cases in detail, it was found that the evolution of rivers is often affected by the topography, and rivers tend to migrate to the lower side of the terrain and erode the terraces on this side. However, terraces on the higher side of the terrain can usually be preserved, and the displacement caused by faulting can be accumulated relatively completely. Though it is reliable to calculate the slip rate of faults through the terrace dislocation on this side, a detailed analysis should be carried out in the field in order to select the appropriate terraces to measure the displacement under the comprehensive effects of topography, landform and other factors, if the terraces on both sides of the river are preserved. In order to obtain the results more objectively, we used Monte Carlo method to estimate the fault displacement and displacement error range. We used the linear equation to fit the position of terrace scarps and faults, and then calculate the terrace displacement. After 100, 000 times of simulation, the fault displacement and its error range could be obtained with 95%confidence interval. We selected the Gaoyan River in the eastern Altyn Tagh Fault as the research object, and used the unmanned air vehicle aerial photography technology to obtain the high-resolution DEM of this area. Based on the terrace evolution model proposed in this paper, we analyzed the terrace evolution with the detailed interpretation of the topography and landform of the DEM, and inferred that the right bank of the river was higher than the left bank, which led to the continuous erosion of the river to the left bank, while the terraces on the right bank were preserved. In addition, four stages of fault displacements and their error ranges were obtained by Monte Carlo method. By integrating the dating results of previous researches in this area, we got the fault slip rate of(1.80±0.51)mm/a. After comparing this result with the slip rates of each section of Altyn Tagh Fault studied by predecessors, it was found that the slip rate obtained in this paper is in line with the variation trend of the slip rate summarized by predecessors, namely, the slip rate gradually decreases from west to east, from 10~12mm/a in the middle section to about 2mm/a at the end.  相似文献   
84.
Many landforms on Earth are profoundly influenced by biota. In particular, biota play a significant role in creating karst biogeomorphology, through biogenic CO2 accelerating calcite weathering. In this study, we explore the ecohydrologic feedback mechanisms that have created isolated depressional wetlands on exposed limestone bedrock in South Florida – Big Cypress National Preserve –as a case study for karst biogeomorphic processes giving rise to regularly patterned landscapes. Specifically, we are interested in: (1) whether cypress depressions on the landscape have reached (or will reach) equilibrium size; (2) if so, what feedback mechanisms stabilize the size of depressions; and (3) what distal interactions among depressions give rise to the even distribution of depressions in the landscape. We hypothesize three feedback mechanisms controlling the evolution of depressions and build a numerical model to evaluate the relative importance of each mechanism. We show that a soil cover feedback (i.e. a smaller fraction of CO2 reaches the bedrock surface for weathering as soil cover thickens) is the major feedback stabilizing depressions, followed by a biomass feedback (i.e. inhibited biomass growth with deepening standing water and extended inundation period as depressions expand in volume). Strong local positive feedback between the volume of depressions and rate of volume expansion and distal negative feedback between depressions competing for water likely lead to the regular patterning at the landscape scale. The individual depressions, however, are not yet in steady state but would be in ~0.2–0.4 million years. This represents the first study to demonstrate the decoupling of landscape-scale self-organization and the self-organization of its constituent agents. © 2018 John Wiley & Sons, Ltd.  相似文献   
85.
 景观指数作为定量描述景观特征的指数,具有明显的尺度效应。进行景观指数的尺度效应研究,对进一步理解格局与尺度之间的关系具有重要意义。本文以TM影像为基础,选择山西省运城市平原、丘陵、山地及综合地貌4种不同地貌类型,对7个常用景观指数进行了多尺度效应分析。结果表明:不同地形上斑块密度(PD)、景观形状指数(LSI)、结合度(COHESION)3个指数有明显的粒度效应,随粒度的增加呈现逐渐减少的变化趋势;最大斑块指数(LPI)、周长面积比分维数(PAFRAC)、景观聚集度(CONTAG)和Shannon多样性指数(SHDI)4个指数随粒度的增加几乎不发生变化。不同地貌的景观指数随幅度的变化规律比较复杂,景观形状指数(LSI)随幅度的增加呈现逐渐增加的趋势,其余6个指数在较小幅度范围内变化比较复杂,但随着幅度的增大有逐渐趋于平稳的趋势。针对研究区不同地貌类型,其景观指数在不同粒度和幅度下有较大区别,可以根据景观指数值的大小来区分地貌的复杂程度。  相似文献   
86.
The fractal characteristics of drainage in the ten kongduis of the upper Yellow River were obtained using the box counting dimension, and the evolution stages of the watershed topography were defined by different ranges of the fractal dimensions of river networks (Dg). The results show that the fractal scaleless range of the Maobula River is 20–370 m based on a combination of artificial judgment, correlation coefficient test and fitting error. Other kongduis show good fractal characteristics in this fractal scaleless range as well. The box counting dimension can be used as a quantitative index of watershed topography fractal characteristics. The fractal dimension of stream networks is independent of the threshold contributing area used for extracting the drainage networks from the DEM. The values of Dg in the upper ten kongduis are in the range of 1.08?1.14. Both the runoff yield and the sediment yield are positively and linearly related with Dg. The positive relation between the sediment yield and Dg reflects the effect of landform features on sediment yield in the young and/or mature stages of landform evolution of the study area. By revising the critical value of Dg, the value of Dg of the basin in the young evolution stage is less than 1.06, while it is more than 1.06 for the basin in mature or old evolution stage. The upper ten kongduis are in the mature stage of landform evolution.  相似文献   
87.
The Eagle Ford Shale of Central and South Texas is currently of great interest for oil and gas exploration and production. Laboratory studies show that the Eagle Ford Shale is anisotropic, with a correlation between anisotropy and total organic carbon. Organic materials are usually more compliant than other minerals present in organic‐rich shales, and their shapes and distribution are usually anisotropic. This makes organic materials an important source of anisotropy in organic‐rich shales. Neglecting shale anisotropy may lead to incorrect estimates of rock and fluid properties derived from inversion of amplitude versus offset seismic data. Organic materials have a significant effect on the PP and PS reflection amplitudes from the Austin Chalk/Upper Eagle Ford interface, the Upper Eagle Ford/Lower Eagle Ford interface, and the Lower Eagle Ford/Buda Limestone interface. The higher kerogen content of the Lower Eagle Ford compared with that of the Upper Eagle Ford leads to a negative PP reflection amplitude that dims with offset, whereas the PS reflection coefficient increases in magnitude with increasing offset. The PP and PS reflection coefficients at the Austin Chalk/Upper Eagle Ford interface, the Upper Eagle Ford/Lower Eagle Ford interface, and the Lower Eagle Ford/Buda Limestone interface all increase in magnitude with increasing volume fraction of kerogen.  相似文献   
88.
This paper uses detailed mapping of eskers to address three questions which are important for reconstructing meltwater behaviour beneath contemporary and ancient ice masses: ‘What controls the morphology of simple and complex esker systems?’, ‘How do esker systems evolve through time?’ and ‘Are esker patterns compatible with groundwater controlled hydraulic spacing of esker tunnels?’. Esker crestlines and widths are mapped on the Breiðamerkurjökull foreland for eight time slices between 1945 and 2007, from high resolution (~50 cm) aerial photography, permitting their long‐term morphological evolution to be analysed in a high level of detail. We find that complex eskers develop where meltwater and sediment is abundant, such that sediment clogs channels, forming distributary eskers. Isolated eskers are simpler and smaller and reflect less abundant meltwater and sediment, which is unable to clog channels. Eskers may take several decades to emerge from outwash deposits containing buried ice and can increase or decrease in size when ice surrounding and underlying them melts out. It has been suggested that groundwater–channel coupling dictates the spacing between eskers at Breiðamerkurjökull. Our results do not dispute this, but suggest that the routing of sediment and meltwater through medial moraines is an additional important control on esker location and spacing. These results may be used to better understand the processes surrounding esker formation in a variety of geographical settings, enabling a more detailed understanding of the operation of meltwater drainage systems in sub‐marginal zones beneath glaciers and ice sheets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
89.
Schmidt‐hammer exposure‐age dating (SHD) was applied to the problem of dating the diachronous surfaces of five distal river‐bank boulder ramparts deposited by snow avalanches plunging into the Jostedøla and Sprongdøla rivers in the Jostedalsbreen region of southern Norway. Approaches to local high‐precision linear age calibration, which controlled in different ways for boulder roundness, were developed. The mean age (SHDmean) and the maximum age (SHDmax) of surface boulders were estimated for whole ramparts, crests and distal fringes. Interpretation was further assisted by reference to R‐value distributions. SHDmean ages (with 95% confidence intervals) ranged from 520 ± 270 years to 5375 ± 965 years, whereas SHDmax ages (expected to be exceeded by <5% of surface boulders) ranged from 675 to 9065 years. SHD ages from the Jostedøla ramparts tended to be older than those associated with the Sprongdøla, rampart crests were younger than the respective distal fringes, and use of relatively rounded boulders yielded more consistent SHD ages than angular boulders. The SHDmean ages indicate differences in recent levels of snow‐avalanche activity between ramparts and provide insights into rampart dynamics as boulders are deposited on rampart crests and, in smaller numbers, on the distal fringes. SHDmax ages provide minimum age estimates of rampart age (i.e. the time elapsed since the ramparts began to form) and suggest that at least some of the ramparts have been developing since the early Holocene. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
90.
侧向侵蚀相关的走滑断裂滑动速率计算新方法   总被引:1,自引:0,他引:1  
断层滑动速率是活动构造研究中的重要内容,是反映断裂活动性和地震危险性的重要参数之一。随着测年技术不断发展和测年精度大幅度提高,全新世甚至千年尺度和百年尺度的年轻地质体的位错也越来越多地被用于断层滑动速率计算。用走滑断裂带上地质体实测年龄计算滑动速率,会受到2种因素影响:1)累积位移时间是否与所测地质体年代相符合;2)地质体位移形成过程中会受到侵蚀。在利用全新世地质体计算断层滑动速率时,应将侧向侵蚀的影响剔除。因此,文中提出1种计算走滑断层滑动速率的新方法——差值法。走滑断层上河流阶地演化与断层位错分析表明,在阶地拔河高度存在较大差异的情况下,可以利用阶地拔河高度与年龄按比例进行计算。此方法在一定程度上提高了所计算滑动速率的精度,但是需要至少有3级不同阶地的拔河高度、年龄以及位错信息。若阶地拔河高度近似呈等差排列,即各级阶地上侧向侵蚀量近似相等的情况下,利用高-低阶地累积位错量之差与对应阶地年龄差来计算滑动速率,可以在一定程度上减少上述2种因素对滑动速率的影响。应用差值法计算得到阿尔金与昆仑断裂的滑动速率为4.7~8.8mm/a,与前人获得的地质学滑动速率、测地学滑动速率、缩短速率以及强震复发周期结果一致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号