首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   58篇
  国内免费   59篇
测绘学   13篇
大气科学   43篇
地球物理   116篇
地质学   220篇
海洋学   44篇
天文学   17篇
综合类   13篇
自然地理   70篇
  2022年   5篇
  2021年   3篇
  2020年   8篇
  2019年   14篇
  2018年   14篇
  2017年   8篇
  2016年   20篇
  2015年   16篇
  2014年   36篇
  2013年   59篇
  2012年   42篇
  2011年   13篇
  2010年   9篇
  2009年   23篇
  2008年   31篇
  2007年   25篇
  2006年   27篇
  2005年   24篇
  2004年   23篇
  2003年   18篇
  2002年   19篇
  2001年   12篇
  2000年   15篇
  1999年   22篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   10篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   4篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1976年   1篇
排序方式: 共有536条查询结果,搜索用时 46 毫秒
61.
The application of sulfur isotope (34S) values of sulfate in groundwater provided the information necessary to evaluate the source, transport and fate of battery acid and associated contaminants at the Gulf Coast Recycling (GCR) facility. The chemical and isotopic composition of groundwater beneath the (GCR) property, a battery recycling facility in east Tampa, Florida, varies more than expected for an area of comparable size. Sulfate (SO42–) values, for example, range from 1.2 to 11,500 mg/L and oxygen and hydrogen isotopes do not attenuate towards the weighted annual mean. Those samples that are high in sulfate generally have a low pH, which immediately indicates battery acid (H2SO4) contamination as a potential source for the sulfate. The low pH and high reactivity of the sulfuric acid groundwater cause the formation of hydrogeological microenvironments due to preferential dissolution of carbonate minerals, which in turn causes enhanced recharge and groundwater flow in certain areas; thus, the extreme scatter in the data set. Because of the difficult hydrogeology it is not straightforward to delineate the point-sources of contamination and up to five potential scenarios have to be evaluated: (1) seawater intrusion, (2) upwelling of high-sulfate groundwater, (3) local dissolution of gypsum, (4) an up-gradient contaminant source to the northeast of the GCR property and (5) battery acid contamination.  相似文献   
62.
We present a simplified method to simulate strong ground motion for a realistic representation of a finite earthquake source burried in a layered earth. This method is based on the stochastic simulation method of Boore (Boore, D. M., 1983, Bull. Seism. Soc. Am. 73, 1865–1894) and the Empirical Greens Function (EFG) method of Irikura (Irikura, K., 1986, Proceedings of the 7th Japan Earthquake symposium, pp. 151–156). The rupture responsible for an earthquake is represented by several subfaults. The geometry of subfaults and their number is decided by the similarity relationships. For simulation of ground motion using the stochastic simulation technique we used the shapping window based on the kinetic source model of the rupture plane. The shaping window deepens on the geometry of the earthquake source and the propagation characteristics of the energy released by various subfaults. The division of large fault into small subfaults and the method for accounting their contribution at the surface is identical to the EGF. The shapping window has been modified to take into account the effect of the transmission of energy released form the finite fault at various boundaries of the layered earth model above the source. In the present method we have applied the correction factor to adjust slip time function of small and large earthquakes. The correction factor is used to simulate strong motion records having basic spectral shape of 2 source model in broad frequency range. To test this method we have used the strong motion data of the Geiyo earthquake of 24th March 2001, Japan recorded by KiK network. The source of this earthquake is modelled by a simple rectangular rupture of size 24 × 15 km, burried at a depth of 31 km in a multilayered earth model. This rupture plane is divided into 16 rectangular subfaults of size 6.0 × 3.75 km each. Strong motion records at eight selected near-field stations were simulated and compared with the observed records in terms of the acceleration and velocity records and their response spectrum. The comparison confirms the suitability of proposed rupture model responsible for this earthquake and the efficacy of the approach in predicting the strong motion scenario of earthquakes in the subduction zone. Using the same rupture model of the Geiyo earthquake, we compared the simulated records from our and the EGF techniques at one near-field station. The comparison shows that this technique gives records which matches in a wide frequency range and that too from simple and easily accessible parameters of burried rupture.  相似文献   
63.
64.
This article argues for a more sustained use of courtroom ethnography by geographers as a means to research legal phenomena, especially in matters of court trials. To do this, I begin by referencing two main threads of courtroom ethnographies conducted in disciplines outside geography, specifically the spaces of the courthouse and courtrooms and the study of emotion and bodily performances by sociolegal and sociology scholars. To then underscore the ways in which a geographical perspective can enhance this existing research and point to topical and theoretical interventions that courtroom ethnography might offer geography, I draw on my experiences with courtroom ethnography on the criminal trial against former Enron chief executives Ken Lay and Jeffrey Skilling. This experience produced a nuanced and lively understanding of how law, justice, and space comingle through the court’s physical spaces and performative embodiments. My conclusions emphasize courtroom ethnographies’ scholarly opportunities for researchers who study the intersection of law and space, while also reflecting on its challenges. Key Words: corporation, courtroom, Enron, ethnography, legal geography.  相似文献   
65.
In a fluvial system, depending on sub‐aerial exposure, non‐pedogenic pond calcretes can be modified into pedogenic calcretes. The present study attempts to understand the effect of sub‐aerial exposure and pedogenesis on calcretes using carbon and oxygen isotopic composition. For this purpose, two profiles (profile‐A and profile‐B) from the same stratigraphic level in Rayka from the western part of India were selected. The profiles are separated by a distance of 500 m and showed differences in calcrete characteristics. In profile‐A, the calcretes showed pedogenic features (root traces and void filling spar) whereas calcretes in profile‐B showed non‐pedogenic characteristics (fine laminations). However, some of the calcretes in profile‐A exhibited remnants of fine laminations suggesting that initially the calcretes had a non‐pedogenic origin but were modified due to pedogenesis. In profile‐A, the carbon and oxygen isotope values of pedogenic calcrete (δ13CPC and δ18OPC) showed more variation compared with non‐pedogenic pond calcretes (δ13CSPC and δ18OSPC) in profile‐B. The δ13CPC and δ13CSPC values exhibited a spread of 3·0‰ and 1·3‰, respectively, and δ18OPC and δ18OSPC values showed a spread of 2·3‰ and 1·3‰, respectively. The differences in the isotopic composition between the two profiles suggest that pedogenesis controlled the isotopic inheritance in calcretes. In addition, the carbon isotopic composition of organic matter (δ13COM) and n‐alkanes (δ13Cn‐alk) that forms the basis of palaeovegetational reconstruction have also been measured to understand the effect of pedogenesis on organic matter in both of the profiles. The average δ13COM values in profile‐A and profile‐B are ?23·4‰ and ?21·1‰, respectively. The disparity in δ13COM values is a result of the difference in the sources and preservation of organic matter. However, the δ13Cn‐alk values show a similar trend in profile‐A and profile‐B, indicating that sources of n‐alkanes are the same in both of the profiles and δ13Cn‐alk values are unaffected by the pedogenic modifications.  相似文献   
66.
67.
68.
The reality of uncertain data cannot be ignored. Anytime that spatial data are used to assist planning, decision making, or policy generation, it is likely that error or uncertainty in the data will propagate through processing protocols and analytic techniques, potentially leading to biased or incorrect decision making. The ability to directly account for uncertainty in spatial analysis efforts is critically important. This article focuses on addressing data uncertainty in one of the most important and widely used exploratory spatial data analysis (ESDA) techniques—choropleth mapping—and proposes an alternative map classification method for uncertain spatial data. The classification approach maximizes within-class homogeneity under data uncertainty while explicitly integrating spatial characteristics to reduce visual map complexity and to facilitate pattern perception. The method is demonstrated by mapping the 2009 to 2013 American Community Survey estimates of median household income in Salt Lake County, Utah, at the census tract level.  相似文献   
69.
中国土壤湿度的时空变化特征   总被引:3,自引:1,他引:2  
张蕾  吕厚荃  王良宇  杨冰韵 《地理学报》2016,71(9):1494-1508
基于中国155个农业气象观测站1981-2010年逐旬土壤湿度资料,分析了全国和12个气候区域0~50 cm逐层的土壤湿度时空分布规律,采用趋势分析和Cramér-von Mises(CVM)方法探究了土壤湿度的变化趋势及突变性。结果表明:西南、江淮、东北、江南、江汉、黄淮和华南地区各层土壤湿度均高于全国平均值,内蒙古地区最低;随着深度增加,西南地区土壤湿度增加最明显,仅青藏高原地区土壤湿度减小。不同区域0~50 cm各层土壤湿度年变化和季节变化差异明显,并具有阶段性特征,大部地区深层土壤湿度高于浅层;总体上,新疆、华南、华北、青藏高原、东北、黄淮地区1981-2010年土壤湿度减小趋势显著,其中新疆地区减小最为明显。除江淮地区外,各区域土壤湿度均存在较为明显的年际差异,突变时段主要集中在20世纪80年代后期至90年代初期、90年代后期两个时间段。  相似文献   
70.
Cretaceous terrestrial sediments deposited in a series of intracratonic basins across the Gobi Desert region of southern Mongolia and northern China contain a unique and diverse vertebrate fauna. In 1996 an expedition jointly sponsored by the Mongolian Paleontological Center and the Hayashibara Museum of Natural Sciences revisited a number of famous vertebrate fossil localities in the eastern Gobi region of Mongolia and, as part of a broad geological and paleontological study, collected a series of paleomagnetic samples from measured sections at Bayn Shireh, Burkhant and Khuren Dukh, as well as from an unmeasured locality adjacent to Khuren Dukh. Expedition members also collected palynologic samples from Khuren Dukh and the adjacent locality. Paleomagnetic analysis shows that all the sites from which samples were collected display detrital remnant magnetization that is consistently normal in polarity. The measured Cretaceous magnetic directions are oriented to the east or northeast of the present day expected direction (declination 356.2°, inclination 65.2°), and they are wholly concordant with that expected for a mid-latitude Northern Hemisphere sampling locality, and with the directions for this period reported by other workers. These results, when considered in tandem with the known biostratigraphy, strongly suggest that the sedimentary deposits at all four localities in the eastern Gobi correlate to the normal polarity chron 34 (the Cretaceous Long Normal), which ranges in age from approximately 121 to 83.5 million years. Previous vertebrate, invertebrate and palynological data from Khuren Dukh suggest that the lower and middle parts of the stratigraphic interval exposed there (which have been assigned to the Shinekhudag Formation) are ‘Khukhtekian’ in age and correspond to the Aptian–Albian interval that can be broadly correlated to the older, Early Cretaceous part of the Cretaceous Long Normal, C34n. New palynologic data presented here indicate that these strata are no older than middle to late Albian. The rocks at Bayn Shireh (the Bayn Shireh Formation) have been assigned a ‘Baynshirenian’ biostratigraphic age that may range from Cenomanian to early Campanian. The magnetostratigraphy results presented here indicate that the strata at both the Bayn Shireh and Burkhant localities do not cross the Santonian/Campanian Stage boundary, however, as this is believed to lie at, or very near, the C34n/C33r reversal boundary. Thus, the Bayn Shireh Formation was most likely deposited near the end of the Cretaceous Long Normal Interval, no later than the latest Santonian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号