首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   15篇
  国内免费   11篇
测绘学   1篇
地球物理   19篇
地质学   68篇
海洋学   1篇
天文学   2篇
综合类   5篇
自然地理   18篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   8篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   8篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   7篇
  2000年   2篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有114条查询结果,搜索用时 46 毫秒
111.
A sequence of Late Holocene moraines on the foreland of the Mueller Glacier, Southern Alps, New Zealand, forms part of a local moraine‐age database used to establish a regional glacier chronology and subsequently to investigate potential intra‐hemispheric and global climate forcing mechanisms. We present new sedimentological and geomorphological evidence that a set of these moraine ridges, previously considered to represent individual advances, constitutes a single moraine complex (the ‘Mueller Memorial Moraine’) formed by supraglacial transport of a large volume of landslide debris to the glacier terminus. Because a moraine formed in this way is not necessarily associated with an advance triggered by a climate event, we question the palaeoclimatic significance of the Mueller Memorial Moraine, as well as that of other moraines in comparable settings. Our findings suggest that the mode of formation and glacio‐dynamical context of moraines whose ages contribute to existing palaeoclimate reconstructions need to be re‐examined in order to assess the reliability of these reconstructions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
112.
This study assesses Little Ice Age (LIA) lake sediment morphological and geochemical records and moraine chronologies in the upper Fraser River watershed, British Columbia, Canada, to resolve differences in paleoenvironmental interpretation and to clarify sediment production and sediment delivery processes within alpine geomorphic systems. Moose Lake (13.9 km2), situated at 1032 m a.s.l., contains a partially varved record indicating variable rates of accumulation during the last millennium that, in general, coincide with previously documented LIA glacial advances in the region and locally. Dendrochronological assessment of forefield surfaces in the headwaters of the catchment (Reef Icefield) shows that periods of moraine construction occurred just prior to ad 1770, ad 1839 and ad 1883, and some time before ad 1570. Taken collectively, increases in varve thickness within eight Moose Lake sediment cores coincide with documented glacier advances over the twelfth through fourteenth centuries, the eighteenth century, and nineteenth through twentieth centuries. Glacial activity during the sixteenth century is also indicated. While varve thickness variations in proximal and distal sediments clearly reflect glacial activity upstream of Moose Lake, the intermediate varve record is relatively insensitive to these decadal and longer‐term catchment processes. Variations in Ca and related elements derived from glaciated carbonate terrain within the Moose River sub‐catchment (including Reef Icefield) indicate gradually increasing delivery from these sources from the twelfth through twentieth centuries even where the varve thickness record is unresponsive. Elevated carbonate concentrations confirm glacial activity c. ad 1200, ad 1500, ad 1750, and ad 1900.  相似文献   
113.
114.
Relict marginal moraines are commonly used landforms in palaeoglaciological reconstructions. In the Swedish mountains, a large number of relict marginal moraines of variable morphology and origin occur. In this study, we have mapped 234 relict marginal moraines distributed all along the Swedish mountains and classified them into four morphological classes: cirque‐and‐valley moraines, valley‐side moraines, complex moraines and cross‐valley moraines. Of these, 46 moraines have been reclassified or are here mapped for the first time. A vast majority of the relict moraines are shown to have formed during deglaciation of an ice‐sheet, rather than by local mountain glaciers as suggested in earlier studies. The relict marginal moraines generally indicate that deglaciation throughout the mountains was characterised by a retreating ice‐sheet, successively damming glacial lakes, and downwasting around mountains. The general lack of moraines indicating valley and cirque glaciers during deglaciation suggests that climatic conditions were unfavourable for local glaciation during the last phase of the Weichselian. This interpretation contrasts with some earlier studies that have reconstructed the formation of local glaciers in the higher parts of the Swedish mountains during deglaciation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号