首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6876篇
  免费   1129篇
  国内免费   1429篇
测绘学   99篇
大气科学   210篇
地球物理   2436篇
地质学   2985篇
海洋学   2511篇
天文学   17篇
综合类   260篇
自然地理   916篇
  2024年   41篇
  2023年   128篇
  2022年   180篇
  2021年   283篇
  2020年   350篇
  2019年   386篇
  2018年   347篇
  2017年   300篇
  2016年   351篇
  2015年   355篇
  2014年   404篇
  2013年   535篇
  2012年   372篇
  2011年   424篇
  2010年   374篇
  2009年   415篇
  2008年   479篇
  2007年   444篇
  2006年   479篇
  2005年   326篇
  2004年   335篇
  2003年   317篇
  2002年   215篇
  2001年   219篇
  2000年   184篇
  1999年   208篇
  1998年   151篇
  1997年   147篇
  1996年   124篇
  1995年   89篇
  1994年   81篇
  1993年   82篇
  1992年   74篇
  1991年   49篇
  1990年   50篇
  1989年   29篇
  1988年   19篇
  1987年   11篇
  1986年   10篇
  1985年   19篇
  1984年   11篇
  1983年   18篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有9434条查询结果,搜索用时 15 毫秒
231.
The restoration of meadowland using the pond and plug technique of gully elimination was performed in a 9‐mile segment along Last Chance Creek, Feather River Basin, California, in order to rehabilitate floodplain functions such as mitigating floods, retaining groundwater, and reducing sediment yield associated with bank erosion and to significantly alter the hydrologic regime. However, because the atmospheric and hydrological conditions have evolved over the restoration period, it was difficult to obtain a comprehensible evaluation of the impact of restoration activities by means of field measurements. In this paper, a new use of physically based models for environmental assessment is described. The atmospheric conditions over the sparsely gauged Last Chance Creek watershed (which does not have any precipitation or weather stations) during the combined historical critical dry and wet period (1982–1993) were reconstructed over the whole watershed using the atmospheric fifth‐generation mesoscale model driven with the US National Center for Atmospheric Research and US National Center for Environmental Prediction reanalysis data. Using the downscaled atmospheric data as its input, the watershed environmental hydrology (WEHY) model was applied to this watershed. All physical parameters of the WEHY model were derived from the existing geographic information system and satellite‐driven data sets. By comparing the prerestoration and postrestoration simulation results under the identical atmospheric conditions, a more complete environmental assessment of the restoration project was made. Model results indicate that the flood peak may be reduced by 10–20% during the wet year and the baseflow may be enhanced by 10–20% during the following dry seasons (summer to fall) in the postrestoration condition. The model results also showed that the hydrologic impact of the land management associated with the restoration mitigates bank erosion and sediment discharge during winter storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
232.
Phosphorus (P) is one of the major limiting nutrient in many freshwater ecosystems. During the last decade, attention has been focused on the fluxes of suspended sediment and particulate P through freshwater drainage systems because of severe eutrophication effects in aquatic ecosystems. Hence, the analysis and prediction of phosphorus and sediment dynamics constitute an important element for ecological conservation and restoration of freshwater ecosystems. In that sense, the development of a suitable prediction model is justified, and the present work is devoted to the validation and application of a predictive soluble reactive phosphorus (SRP) uptake and sedimentation models, to a real riparian system of the middle Ebro river floodplain. Both models are coupled to a fully distributed two‐dimensional shallow‐water flow numerical model. The SRP uptake model is validated using data from three field experiments. The model predictions show a good accuracy for SRP concentration, where the linear regressions between measured and calculated values of the three experiments were significant (r2 ≥ 0.62; p ≤ 0.05), and a Nash–Sutcliffe coefficient (E) that ranged from 0.54 to 0.62. The sedimentation model is validated using field data collected during two real flooding events within the same river reach. The comparison between calculated and measured sediment depositions showed a significant linear regression (p ≤ 0.05; r2 = 0.97) and an E that ranged from 0.63 to 0.78. Subsequently, the complete model that includes flow dynamics, solute transport, SRP uptake and sedimentation is used to simulate and analyse floodplain sediment deposition, river nutrient contribution and SRP uptake. According to this analysis, the main SRP uptake process appears to be the sediment sorption. The analysis also reveals the presence of a lateral gradient of hydrological connectivity that decreases with distance from the river and controls the river matter contribution to the floodplain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
233.
Gravel road surfaces can be a major source of fine sediment to streams, yet their contribution to channel reach sediment balances remains poorly documented. To quantify the input of road surface material and to compare this input with natural sediment sources at the reach scale, suspended sediment dynamics was examined and a 16‐month sediment balance was developed for a ~35 channel‐width (approx. 425 m) reach of the Honna River, a medium‐size, road‐affected stream located in coastal British Columbia. Of the 105 ± 33 t of suspended material passing through the reach, 18 ± 6% was attributed to the road surface. The high availability of sediment on the road surface appears to limit hysteresis in road run‐off. During rainstorms that increase streamflow, road surface material composed 0.5–15% of sediment inputs during relatively dry conditions from April to the end of September and 5–70% through wetter conditions from October to the end of March, but our data do not show evidence of major sediment accumulation on the riverbed in the reach. A comparison of modelled sediment production on the road surface with observed yields from drainage channels suggests that (1) during low intensity rainfall, ditches and drainage channels may trap sediment from road run‐off, which is subsequently released during events of greater intensity, and/or (2) production models do not effectively describe processes, such as deposition or erosion of sediment in ditches, which control sediment transport and delivery. Our findings further emphasize the risk of unpaved roads in polluting river systems and highlight the continued need for careful road design and location away from sensitive aquatic environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
234.
Global climate change and diverse human activities have resulted in distinct temporal–spatial variability of watershed hydrological regimes, especially in water‐limited areas. This study presented a comprehensive investigation of streamflow and sediment load changes on multi‐temporal scales (annual, flood season, monthly and daily scales) during 1952–2011 in the Yanhe watershed, Loess Plateau. The results indicated that the decreasing trend of precipitation and increasing trend of potential evapotranspiration and aridity index were not significant. Significant decreasing trends (p < 0.01) were detected for both the annual and flood season streamflow, sediment load, sediment concentration and sediment coefficient. The runoff coefficient exhibited a significantly negative trend (p < 0.01) on the flood season scale, whereas the decreasing trend on the annual scale was not significant. The streamflow and sediment load during July–August contributed 46.7% and 86.2% to the annual total, respectively. The maximum daily streamflow and sediment load had the median occurrence date of July 31, and they accounted for 9.7% and 29.2% of the annual total, respectively. All of these monthly and daily hydrological characteristics exhibited remarkable decreasing trends (p < 0.01). However, the contribution of the maximum daily streamflow to the annual total progressively decreased (?0.07% year?1), while that of maximum daily sediment load increased over the last 60 years (0.08% year?1). The transfer of sloping cropland for afforestation and construction of check‐dams represented the dominant causes of streamflow and sediment load reductions, which also made the sediment grain finer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
235.
Suspended sediment plays an important role in the distribution and transport of many pollutants (such as radionuclides) in rivers. Pollutants may adsorb on fine suspended particles (e.g. clay) and spread according to the suspended sediment movement. Hence, the simulation of the suspended sediment mechanism is indispensable for realistic transport modelling. This paper presents and tests a simple mathematical model for predicting the suspended sediment transport in river networks. The model is based on the van Rijn suspended load formula and the advection–diffusion equation with a source or sink term that represents the erosion or deposition fluxes. The transport equation is solved numerically with the discontinuous finite element method. The model evaluation was performed in two steps, first by comparing model simulations with the measured suspended sediment concentrations in the Grote Nete–Molse Nete River in Belgium, and second by a model intercomparison with the sediment transport model NST MIKE 11. The simulations reflect the measurements with a Nash‐Sutcliffe model efficiency of 0.6, while the efficiency between the proposed model and the NST MIKE 11 simulations is 0.96. Both evaluations indicate that the proposed sediment transport model, that is sufficiently simple to be practical, is providing realistic results.  相似文献   
236.
Bedform geometry is widely recognized to be a function of transport stage. Bedform aspect ratio (height/length) increases with transport stage, reaches a maximum, then decreases as bedforms washout to a plane bed. Bedform migration rates are also linked to bedform geometry, in so far as smaller bedforms in coarser sediment tend to migrate faster than larger bedforms in finer sediment. However, how bedform morphology (height, length and shape) and kinematics (translation and deformation) change with transport stage and suspension have not been examined. A series of experiments is presented where initial flow depth and grain size were held constant and the transport stage was varied to produce bedload dominated, mixed‐load dominated and suspended‐load dominated conditions. The results show that the commonly observed pattern in bedform aspect ratio occurs because bedform height increases then decreases with transport stage, against a continuously increasing bedform length. Bedform size variability increased with transport stage, leading to less uniform bedform fields at higher transport stage. Total translation‐related and deformation‐related sediment fluxes all increased with transport stage. However, the relative contribution to the total flux changed. At the bedload dominated stage, translation‐related and deformation‐related flux contributed equally to the total flux. As the transport stage increased, the fraction of the total load contributed by translation increased and the fraction contributed by deformation declined because the bedforms got bigger and moved faster. At the suspended‐load dominated transport stage, the deformation flux increased and the translation flux decreased as a fraction of the total load, approaching one and zero, respectively, as bedforms washed out to a plane bed.  相似文献   
237.
赵娟 《地质与勘探》2016,52(3):518-523
青海省祁漫塔格地区位于柴达木盆地西南缘,是青海省重要的铁多金属成矿基地之一。利用88442个野外采样点1∶5万水系沉积物测量数据,采用Geo Expl软件圈定了该地区的衬值异常。衬值是指各元素0.5 km×0.5 km网格化数据与其园域搜索半径5km、移动步长0.5km移动平均值的比值。选用自定义累频"90、95、98、100"确定了异常的外、中、内带。通过常规方法和衬值圈定的异常的对比,表明衬值异常能够削弱不同地质背景差异,使异常形态更为规整,浓集中心更为明显,并且可能发现新异常。  相似文献   
238.
东海表层沉积物碎屑矿物组合分布特征及其物源环境指示   总被引:1,自引:1,他引:0  
张凯棣  李安春  董江  张晋 《沉积学报》2016,34(5):902-911
为进一步明确东海陆架区的沉积物物源及水动力环境,对研究区表层沉积物的碎屑矿物进行了鉴定分析。研究区共鉴定出49种重矿物、8种轻矿物。根据碎屑矿物的组合分布结合矿物形态特征,将东海陆架区划分为三个矿物区,内陆架矿物区、外陆架矿物区及虎皮礁矿物区。内陆架矿物区,动力分选是影响碎屑矿物分布的主要因素,物质来源相对单一,碎屑矿物主要来源于现代长江物质,闽浙沿岸近岸河流的输入,人类活动也对该区的矿物组成产生一定的影响;外陆架矿物区,重矿物分布的主控因素是长期的分选作用,主要是长江物质经后期改造形成,现代长江物质可从内陆架中北部扩散至124.5°E左右,此外外陆架东南部地形的变化也对碎屑矿物的分布起到一定控制作用;虎皮礁矿物区,有来自黄河、长江、火山物质的多重影响,且水动力环境相对复杂。  相似文献   
239.
中国地质调查局与阿根廷地质矿产调查局合作在阿根廷西北部米纳毕戈塔地区进行1︰25万水系沉积物测量,该区属于干旱-半干旱高寒山区,为突出找矿效果,消除或减少风积物干扰,需要确定适合于该区的水系沉积物采样粒度。为此,在该区选择一个有已知矿床的1︰5万图幅进行采样粒度试验,分别选择10~60目、-60目、60~80目、-80目4个粒度级进行粒度试验;根据我国区域地球化学勘查规范,每个粒度分析39种元素。结果表明,大部分元素在4种粒度水系沉积物中的分布形态基本一致,都能够较好地反映出区内已知矿床,说明采用的采样方法可以有效地避免风成砂干扰;金、银、铜、锡等成矿元素在4种粒度中的分布略有差异,10~60目的金、铜和锡异常对已知矿体的反应更清晰准确。因此,本区水系沉积物地球化学测量的最佳采样粒度是10~60目。根据本次试验结果,中-阿地调局在本区联合开展1︰25万水系沉积物地球化学测量时采用了10~60目水系沉积物作为采样介质,取得了很好的效果。这是本区第一次进行水系沉积粒度试验,对本区将来的地球化学调查和研究具有指导意义。  相似文献   
240.
为缓解内蒙古河段"二级悬河"形势,以黄河上游沙漠宽谷河段为研究对象,以龙羊峡水库、刘家峡水库为调控主体,开展黄河上游水沙调控研究。建立了输沙量、发电量最大的单目标模型以及多目标模型;分别采用自迭代模拟算法、逐次逼近动态规划算法(DPSA)和改进的非支配排序遗传优化算法(NSGA-Ⅱ)求解模型;设置了初始、常规、优化和联合优化4种方案。通过实例计算,联合优化调度方案的区间总冲刷量达到了0.38亿t,梯级发电量148.22亿kW·h。该方案以较小的电量损失换来了输沙量的大幅度增加,水沙调控效果显著,推荐为最优方案。研究成果量化了水沙调控效果和各目标间的转化规律,为开展黄河上游水沙调控提供了决策依据,具有重要的应用价值和实际指导意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号