首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1387篇
  免费   221篇
  国内免费   425篇
测绘学   50篇
大气科学   10篇
地球物理   368篇
地质学   1180篇
海洋学   108篇
天文学   1篇
综合类   50篇
自然地理   266篇
  2024年   8篇
  2023年   26篇
  2022年   58篇
  2021年   68篇
  2020年   66篇
  2019年   68篇
  2018年   77篇
  2017年   78篇
  2016年   64篇
  2015年   65篇
  2014年   60篇
  2013年   74篇
  2012年   90篇
  2011年   59篇
  2010年   67篇
  2009年   86篇
  2008年   65篇
  2007年   106篇
  2006年   94篇
  2005年   69篇
  2004年   94篇
  2003年   83篇
  2002年   60篇
  2001年   56篇
  2000年   55篇
  1999年   45篇
  1998年   39篇
  1997年   43篇
  1996年   41篇
  1995年   29篇
  1994年   32篇
  1993年   31篇
  1992年   18篇
  1991年   13篇
  1990年   11篇
  1989年   9篇
  1988年   16篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1983年   1篇
排序方式: 共有2033条查询结果,搜索用时 187 毫秒
431.
It is known that there is a front-like structure at the mixed layer depth (MLD) distribution in the subtropical gyre, which is called the MLD front, and is associated with the formation region of mode water. In the present article, the generation mechanism of the MLD front is studied using an idealized ocean general circulation model with no seasonal forcing. First, it is shown that the MLD front occurs along a curve where u g ·∇T s = 0 is satisfied (u g is the upper ocean geostrophic velocity vector, T s is the sea surface temperature and ∇ is the horizontal gradient operator). In other words, the front is the boundary between the subduction region (u g ·∇T s > 0) and the region where subduction does not occur (u g ·∇T s < 0). Second, we have investigated subduction of low potential vorticity water at the MLD front, which has been pointed out by past studies. Since u g ·∇T s = 0 at the MLD front, the water particles do not cross the outcrop at the MLD front. The water that is subducted at the MLD front has come from the deep mixed layer region where the sea surface temperature is higher than that at the MLD front. The temperature of the water in the deep mixed layer region decreases as it is advected eastward, attains its minimum at the MLD front where u g ·∇T s = 0, and then subducts under the warmer surface layer. Since the deep mixed layer water subducts beneath a thin stratified surface layer, maintaining its thickness, the mixed layer depth changes abruptly at the subduction location.  相似文献   
432.
A 1987 survey of the offshore Peru forearc using the SeaMARC II seafloor mapping system reveals that subduction of the Nazca Ridge has resulted in uplift of the lowermost forearc by as much as 1500 m. This uplift is seen in the varied depths of two forearc terraces opposite the subducting ridge. Uplift of the forearc has caused fracturing, minor surficial slumping, and increased erosion through small canyons and gullies. Oblique trending linear features on the forearc may be faults with a strike-slip component of motion caused by the oblique subduction of the Nazca Ridge. The trench in the zone of ridge subduction is nearly linear, with no re-entrant in the forearc due to subduction of the Nazca Ridge. Compressional deformation of the forearc due to subduction of the ridge is relatively minor, suggesting that the gently sloping Nazca Ridge is able to slide beneath the forearc without significantly deforming it. The structure of the forearc is similar to that revealed by other SeaMARC II surveys to the north, consisting of: 1) a narrow zone (10 to 15 km across) of accreted material making up the lower forearc; 2) a chaotic middle forearc; 3) outcropping consolidated material and draping sediment on the upper forearc; and 4) the smooth, sedimented forearc shelf.The subducting Nazca plate and the Nazca Ridge are fractured by subduction-induced faults with offsets of up to 500 m. Normal faulting is dominant and begins about 50 km from the trench axis, increasing in frequency and offset toward the trench. These faults are predominantly trench-parallel. Reverse faults become more common in the deepest portion of the trench and often form at slight angles to the trench axis.Intrusive and extrusive volcanic areas on the Nazca plate appear to have formed well after the seafloor was created at the ridge crest. Many of the areas show evidence of current scour and are cut by faulting, however, indicating that they formed before the seafloor entered the zone of subduction-induced faulting.  相似文献   
433.
The P–T–t path of high‐P metamorphic rocks in subduction zones may reveal valuable information regarding the tectonic processes along convergent plate boundaries. Herein, we present a detailed petrological, pseudosection modelling and radiometric dating study of several amphibole schists of oceanic affinity from the Lhasa Block, Tibet. The amphibole schists experienced an overall clockwise P–T path that was marked by post‐Pmax heating–decompression and subsequent isothermal decompression following the attainment of peak high‐P and low‐T conditions (~490°C and 1.6 GPa). Pseudosection modelling shows that the amphibole schists underwent water‐unsaturated conditions during prograde metamorphism, and the stability field of the assemblage extends to lower temperatures and higher pressures within the water‐unsaturated condition relative to water‐saturated model along the prograde path. The high‐P amphibole schists were highly reduced during retrograde metamorphism. Precise evaluation of the ferric iron conditions determined from the different compositions of epidote inclusions in garnet and matrix epidote is crucial for a true P–T estimate by garnet isopleth thermobarometry. Lu–Hf isotope analyses on garnet size separates from a garnet‐bearing amphibole schist yield four two‐point garnet–whole‐rock isochron ages from 228.2 ± 1.2 Ma to 224.3 ± 1.2 Ma. These Lu–Hf dates are interpreted to constrain the period of garnet growth and approximate the timing of prograde metamorphism because of the low peak metamorphic temperature of the rock and the well‐preserved Mn/Lu growth zoning in garnet. The majority of zircon U–Pb dates provide no constraints on the timing of metamorphism; however, two concordant U–Pb dates of 222.4 ± 3.9 Ma and 223.3 ± 4.2 Ma were obtained from narrow and uncommon metamorphic rims. Coexistence of zircon and sphene in the samples implies that the metamorphic zircon growth was likely assisted by retrogression of rutile to sphene during exhumation. The near coincident radiometric dates of zircon U–Pb and garnet Lu–Hf indicate rapid burial and exhumation of the amphibole schists, suggesting a closure time of c. 224–223 Ma for the fossil ocean basin between the northern and southern Lhasa blocks.  相似文献   
434.
Metamorphic soles are tectonic slices welded beneath most large‐scale ophiolites. These slivers of oceanic crust metamorphosed up to granulite facies conditions are interpreted as forming during the first million years of intraoceanic subduction following heat transfer from the incipient mantle wedge towards the top of the subducting plate. This study reappraises the formation of metamorphic soles through detailed field and petrological work on three key sections from the Semail ophiolite (Oman and United Arab Emirates). Based on thermobarometry and thermodynamic modelling, it is shown that metamorphic soles do not record a continuous temperature gradient, as expected from simple heating by the upper plate or by shear heating as proposed in previous studies. The upper, high‐T metamorphic sole is subdivided in at least two units, testifying to the stepwise formation, detachment and accretion of successive slices from the down‐going slab to the mylonitic base of the ophiolite. Estimated peak pressure–temperature conditions through the metamorphic sole, from top to bottom, are 850°C and 1 GPa, 725°C and 0.8 GPa and 530°C and 0.5 GPa. These estimates appear constant within each unit but differing between units by 100–200°C and ~0.2 GPa. Despite being separated by hundreds of kilometres below the Semail ophiolite and having contrasting locations with respect to the ridge axis position, metamorphic soles show no evidence for significant petrological variations along strike. These constraints allow us to refine the tectonic–petrological model for the genesis of metamorphic soles, formed via the stepwise stacking of several homogeneous slivers of oceanic crust and its sedimentary cover. Metamorphic soles result not so much from downward heat transfer (ironing effect) as from progressive metamorphism during strain localization and cooling of the plate interface. The successive thrusts originate from rheological contrasts between the sole, initially the top of the subducting slab, and the peridotite above as the plate interface progressively cools. These findings have implications for the thickness, the scale and the coupling state at the plate interface during the early history of subduction/obduction systems.  相似文献   
435.
A new tectonic model for Tasmania incorporates subduction at the boundary between eastern and western Tasmania. This model integrates thin‐ and thick‐skinned tectonics, providing a mechanism for emplacement of allochthonous elements on to both eastern and western Tasmania as well as rapid burial, metamorphism and exhumation of high‐pressure metamorphic rocks. The west Tamar region in northern Tasmania lies at the boundary between eastern and western Tasmania. Here, rocks in the Port Sorell Formation were metamorphosed at high pressures (700–1400 MPa) and temperatures (400–500°C), indicating subduction to depths of up to 30 km. The eastern boundary of the Port Sorell Formation with mafic‐ultramafic rocks of the Andersons Creek Ultramafic Complex is hidden beneath allochthonous ?Mesoproterozoic turbidites of the Badger Head Group. At depth, this boundary coincides with the inferred boundary between eastern and western Tasmania, imaged in seismic data as a series of east‐dipping reflections. The Andersons Creek Ultramafic Complex was previously thought of as allochthonous, based mainly on associations with other mafic‐ultramafic complexes in western Tasmania. However, the base of the Andersons Creek Ultramafic Complex is not exposed and, given its position east of the boundary with western Tasmania, it is equally likely that it represents the exposed western edge of autochthonous eastern Tasmanian basement. A thin sliver of faulted and metamorphosed rock, including amphibolites, partially separates the Badger Head Group from the Andersons Creek Ultramafic Complex. Mafic rocks in this package match geochemically mafic rocks in the Port Sorell Formation. This match is consistent with two structural events in the Badger Head Group showing tectonic transport of the group from the west during Cambrian Delamerian orogenesis. Rather than being subducted, emplacement of the Badger Head Group onto the Andersons Creek Ultramafic Complex indicates accretion of the Badger Head Group onto eastern Tasmania. Subsequent folding and thrusting in the west Tamar region also accompanied Devonian Tabberabberan orogenesis. Reversal from northeast to southwest tectonic vergence saw imbricate thrusting of Proterozoic and Palaeozoic strata, possibly coinciding with reactivation of the suture separating eastern and western Tasmania.  相似文献   
436.
This paper assesses variations in quantitative reconstructions of late Holocene relative sea‐level (RSL) change arising from using modern diatom datasets from different spatial scales, applied to case studies from Alaska. We investigate the implications of model choice in transfer functions using local‐, sub‐regional‐ and regional‐scale modern training sets, and produce recommendations on the creation and selection of modern datasets for reconstructing RSL change over Holocene timescales in tidal marsh environments comparable with those in Alaska. We show that regional modern training sets perform best in terms of providing fossil samples with good modern analogues, and in producing reconstructions that most closely match observations, where these are available. Local training sets are frequently insufficient to provide fossil samples with good modern analogues and may over‐estimate the precision of RSL reconstructions. This is particularly apparent when reconstructing RSL change for periods beyond the last century. For reconstructing RSL change we recommend using regional modern training sets enhanced by local samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
437.
The Lago di Cignana ultra‐high‐pressure unit (LCU), which consists of coesite–eclogite facies metabasics and metasediments, preserves the most deeply subducted oceanic rocks worldwide. New constraints on the prograde and early retrograde evolution of this ultra‐high pressure unit and adjoining units provide important insights into the evolution of the Piemontese–Ligurian palaeo‐subduction zone, active in Paleocene–Eocene times. In the LCU, a first prograde metamorphic assemblage, consisting of omphacite + Ca‐amphibole + epidote + rare biotite + ilmenite, formed during burial at estimated P < 1.7 GPa and 350 < T < 480 °C. Similar metamorphic conditions of 400 < T < 650 °C and 1.0 < P < 1.7 GPa have been estimated for the meta‐ophiolitic rocks juxtaposed to the LCU. The prograde assemblage is partially re‐equilibrated into the peak assemblage garnet + omphacite + Na‐amphibole + lawsonite + coesite + rutile, whose conditions were estimated at 590 < T < 605 °C and P > 3.2 GPa. The prograde path was characterized by a gradual decrease in the thermal gradient from ~9–10 to ~5–6 °C km?1. This variation is interpreted as the evidence of an increase in the rate of subduction of the Piemonte–Ligurian oceanic slab in the Eocene. Accretion of the Piemontese oceanic rocks to the Alpine orogen and thermal relaxation were probably related to the arrival of more buoyant continental crust at the subduction zone. Subsequent deformation of the orogenic wedge is responsible for the present position of the LCU, sandwiched between two tectonic slices of meta‐ophiolites, named the Lower and Upper Units, which experienced peak pressures of 2.7–2.8 and <2.4 GPa respectively.  相似文献   
438.
Ultramafic‐intermediate rocks exposed on the South Island of the Percy Isles have been previously grouped into the ophiolitic Marlborough terrane of the northern New England Fold Belt. However, petrological, geochemical and geochronological data all suggest a different origin for the South Island rocks and a new terrane, the South Island terrane, is proposed. The South Island terrane rocks differ from ultramafic‐mafic rocks of the Marlborough terrane not only in lithological association, but also in geochemical features and age. These data demonstrate that the South Island terrane is genetically unrelated to the Marlborough terrane but developed in a supra‐subduction zone environment probably associated with an Early Permian oceanic arc. There is, however, a correlation between the South Island terrane rocks and intrusive units of the Marlborough ophiolite. This indicates that the two terranes were in relative proximity to one another during Early Permian times. A K/Ar age of 277 ± 7 Ma on a cumulative amphibole‐rich diorite from the South Island terrane suggests possible affinities with the Gympie and Berserker terranes of the northern New England Fold Belt.  相似文献   
439.
钱丰  田亚洲  武勇  杨经绥 《地质论评》2022,68(2):2022030007-2022030007
达拉布特蛇绿岩位于中亚造山带西南缘,是古亚洲洋的扩张、俯冲、消减和闭合过程的产物,保留了洋盆形成及构造演化信息。前人对达拉布特蛇绿岩的形成大地构造背景始终未取得统一的认识。为探讨蛇绿岩所代表的构造演化过程,笔者以达拉布特蛇绿岩中的地幔橄榄岩为研究对象,通过详细的矿物地球化学及其氧同位素研究,对达拉布特地幔橄榄岩成因及构造背景提出新的制约。达拉布特方辉橄榄岩中橄榄石Ni/Co值为21~22,Ni/Mn值为3.0~7.8具有部分熔融残余的特征,此外,橄榄石中不相容元素相对于正常地幔橄榄石亏损,表明方辉橄榄岩为部分熔融的残余组分。方辉橄榄岩中尖晶石Cr# 为47~52、TiO2含量0.01%~0.04%,橄榄石Fo为90.34%~90.98%指示方辉橄榄岩经历>20%的部分熔融。方辉橄榄岩中橄榄石δ18 Oolivine值+5.1~+6.2‰、单斜辉石δ18Ocpx值+5.6~+6.9‰,其变化范围较大且整体高于正常地幔中橄榄石和单斜辉石的δ18 O值,矿物间氧同位素分馏系数Δ18OOpx—olivine平均-0.3‰,Δ18OOpx—cpx平均-0.7‰,显著区别于正常地幔中平衡的氧同位素分馏系数,具有明显的交代作用特征。结合方辉橄榄岩橄榄石中亏损的微量元素特征,认为方辉橄榄岩可能受到流体交代作用的影响,俯冲壳源物质脱水形成的高δ18O流体交代地幔橄榄岩导致了矿物与矿物间不平衡的氧同位素特征。通过尖晶石与单斜辉石成分判别,尖晶石与单斜辉石的主量元素具有介于弧前与深海地幔之间的过渡型特征,与俯冲初始阶段形成的地幔橄榄岩相似。综合矿物地球化学与氧同位素特征,笔者认为达拉布特地幔橄榄岩为形成于弧前初始俯冲环境。板块俯冲导致弧前扩张形成新洋壳,上涌的软流圈MORB like熔体与俯冲壳源物质熔融形成熔/流体与地幔橄榄岩相互作用,形成达拉布特地幔橄榄岩。  相似文献   
440.
钱丰  田亚洲  武勇  杨经绥 《地质论评》2022,68(4):1216-1235
达拉布特蛇绿岩位于中亚造山带西南缘,是古亚洲洋的扩张、俯冲、消减和闭合过程的产物,保留了洋盆形成及构造演化信息。前人对达拉布特蛇绿岩的形成大地构造背景始终未取得统一的认识。为探讨蛇绿岩所代表的构造演化过程,笔者以达拉布特蛇绿岩中的地幔橄榄岩为研究对象,通过详细的矿物地球化学及其氧同位素研究,对达拉布特地幔橄榄岩成因及构造背景提出新的制约。达拉布特方辉橄榄岩中橄榄石Ni/Co值为21~22,Ni/Mn值为3.0~7.8具有部分熔融残余的特征,此外,橄榄石中不相容元素相对于正常地幔橄榄石亏损,表明方辉橄榄岩为部分熔融的残余组分。方辉橄榄岩中尖晶石Cr# 为47~52、TiO2含量0.01%~0.04%,橄榄石Fo为90.34%~90.98%指示方辉橄榄岩经历>20%的部分熔融。方辉橄榄岩中橄榄石δ18 Oolivine值+5.1~+6.2‰、单斜辉石δ18Ocpx值+5.6~+6.9‰,其变化范围较大且整体高于正常地幔中橄榄石和单斜辉石的δ18 O值,矿物间氧同位素分馏系数Δ18OOpx—olivine平均-0.3‰,Δ18OOpx—cpx平均-0.7‰,显著区别于正常地幔中平衡的氧同位素分馏系数,具有明显的交代作用特征。结合方辉橄榄岩橄榄石中亏损的微量元素特征,认为方辉橄榄岩可能受到流体交代作用的影响,俯冲壳源物质脱水形成的高δ18O流体交代地幔橄榄岩导致了矿物与矿物间不平衡的氧同位素特征。通过尖晶石与单斜辉石成分判别,尖晶石与单斜辉石的主量元素具有介于弧前与深海地幔之间的过渡型特征,与俯冲初始阶段形成的地幔橄榄岩相似。综合矿物地球化学与氧同位素特征,笔者认为达拉布特地幔橄榄岩为形成于弧前初始俯冲环境。板块俯冲导致弧前扩张形成新洋壳,上涌的软流圈MORB like熔体与俯冲壳源物质熔融形成熔/流体与地幔橄榄岩相互作用,形成达拉布特地幔橄榄岩。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号