首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1387篇
  免费   221篇
  国内免费   425篇
测绘学   50篇
大气科学   10篇
地球物理   368篇
地质学   1180篇
海洋学   108篇
天文学   1篇
综合类   50篇
自然地理   266篇
  2024年   8篇
  2023年   26篇
  2022年   58篇
  2021年   68篇
  2020年   66篇
  2019年   68篇
  2018年   77篇
  2017年   78篇
  2016年   64篇
  2015年   65篇
  2014年   60篇
  2013年   74篇
  2012年   90篇
  2011年   59篇
  2010年   67篇
  2009年   86篇
  2008年   65篇
  2007年   106篇
  2006年   94篇
  2005年   69篇
  2004年   94篇
  2003年   83篇
  2002年   60篇
  2001年   56篇
  2000年   55篇
  1999年   45篇
  1998年   39篇
  1997年   43篇
  1996年   41篇
  1995年   29篇
  1994年   32篇
  1993年   31篇
  1992年   18篇
  1991年   13篇
  1990年   11篇
  1989年   9篇
  1988年   16篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1983年   1篇
排序方式: 共有2033条查询结果,搜索用时 15 毫秒
121.
地勘经济改革的战略思想是建设适应社会主义市场经济的新体制,将现有的地勘队伍组建为"地质找矿的野战军"和"实行企业化的地方军".分别按事业机制和企业机制运行。如何实现地勘单位(地方军)的企业化,笔者认为首先必须用现代企业制度改造和重塑现有的多种经营企业,并分析了困难和有利条件,提出了相应的对策和措施,使多种经营企业真正成为符合现代企业制度要求的经济实体。加快发展部门产业经济,才能逐步推进地勘单位的企业化。  相似文献   
122.
Abstract Slab detachment is a geophysical instability whose manifestation can be revealed by seismic tomography. Evidence of this phenomenon is in the Dinarides/Hellenic and the New Hebrides subduction zones. Subducted slabs in these regions are torn horizontally at depths ranging from 100 to 300 km. We constructed a viscoelastic three-dimensional finite element model and investigated the state of stress. We found that an area with high stress concentration of the order of several hundred MPa is formed near the tip of the tear inside the slab, which can cause lateral migration of the tear. Favorable conditions for slab detachment are characterized by large interplate frictional force at a subduction zone and small slab resistance force deeper down. Stress concentration increases with the down-dip tension inside the slab. The phenomenon of slab weakening has also been studied from a thermal-mechanical standpoint, using a two-dimensional convection model with non-Newtonian, temperature-dependent rheology. The stress-dependent rheology plays an important role in causing local weakening of the descending slab. In strongly time-dependent situations the fast descending slab is not strong everywhere but has a weak region in the middle, making it vulnerable to slab detachment. The presence of viscous heating will enhance slab detachment tendency by further weakening the interior by the frictional heating. Besides these effects, there are other mechanisms which can also weaken the slab interior and help to make slabs more pliable and susceptible to detachment.  相似文献   
123.
The structure, microstructure and petrology of a small area close to the village of Bard in Val d'Aosta (Italy) has been studied in detail. The area lies across the contact between the Gneiss Minuti (GM) and the Eclogitic Micaschist (EMS) Complexes of the Lower element of the Sesia portion of the Sesia-Lanzo Zone (Western Alps). Both complexes have undergone high-pressure metamorphism, but the metamorphic assemblages indicate a sudden increase in pressure in going across the contact from the GM to the EMS. Therefore, we interpret the contact as a thrust dividing the lower element of the Sesia into two sub-elements. This interpretation is supported by structural evidence.
The early Alpine (90-70 Ma) metamorphic history is best preserved in the EMS and is one of increasing pressure associated with thrusting. The maximum P/T recorded in the EMS is >1500 MPa (>15kbar) and 550°C and in the GM is < 1500-1300 MPa (< 15-13 kbar) and 500-550°C. We suggest that the rocks were probably in an active Benioff zone during this time.
From then on the histories of the GM and EMS are the same. Deformation continued and the thrust and thrust slices were folded during decreasing pressure. We interpret the first postthrusting deformation in terms of uplift associated with continued shortening of the crust and underplating after the Benioff zone had become inactive and a new Benioff zone had developed further to the north-west.
A still later deformation and the Lepontine metamorphism (38 Ma) are related to continued uplift. Much of this deformation is characterized by structures indicative of vertical shortening and lateral spreading as the mountains rose above the general level of the surface.  相似文献   
124.
The GRACE satellite mission has been measuring the Earth's gravity field and its temporal variations since 2002 April. Although these variations are mainly due to mass transfer within the geofluid envelops, they also result from mass displacements associated with phenomena including glacial isostatic adjustment and earthquakes. However, these last contributions are difficult to isolate because of the presence of noise and of geofluid signals, and because of GRACE's coarse spatial resolution (>400 km half-wavelength). In this paper, we show that a wavelet analysis on the sphere helps to retrieve earthquake signatures from GRACE geoid products. Using a wavelet analysis of GRACE geoids products, we show that the geoid variations caused by the 2004 December ( M w= 9.2) and 2005 March ( M w= 8.7) Sumatra earthquakes can be detected. At GRACE resolution, the 2004 December earthquake produced a strong coseismic decrease of the gravity field in the Andaman Sea, followed by relaxation in the area affected by both the Andaman 2004 and the Nias 2005 earthquakes. We find two characteristic timescales for the relaxation, with a fast variation occurring in the vicinity of the Central Andaman ridge. We discuss our coseismic observations in terms of density changes of crustal and upper-mantle rocks, and of the vertical displacements in the Andaman Sea. We interpret the post-seismic signal in terms of the viscoelastic response of the Earth's mantle. The transient component of the relaxation may indicate the presence of hot, viscous material beneath the active Central Andaman Basin.  相似文献   
125.
126.
Understanding the dynamics of organic matter in modern marine water columns greatly favors the geobiological evaluation of hydrocarbon source rocks. Biolipids could make great contribution to petroleum hydrocarbons due to their comparable chemical components and the slightly refractory characteristics of biolipids during the microbial/thermal degradation. A variety of environmental factors such as temperature, CO2 and salinity could affect the biochemical contents in microorganisms. As a result, microorganisms living in a changing environmental condition might have a different contribution to the petroleum formation. Organic carbon flux is shown to bear a positive correlation with the primary productivity only within a certain range of biomass volumes in a specific biohabitat. Furthermore, organic matter is degraded much quickly in a water column with oxic conditions. Therefore, the anoxic condition, along with the enhanced biological productivity, would be one of the significant factors in the formation of high-quality hydrocarbon source rocks. The formation of biofilms and microbial mats favors the preservation of sedimentary organic matter by decreasing the degradation rate of organic matter. Identification of biofilms and microbial mats in sedimentary rocks will thus greatly help to understand the depositional processes of organic matter finally preserved in hydrocarbon source rocks. __________ Translated from Earth Science—Journal of China University of Geosciences, 2007, 32(6): 748–754 [译自: 地球科学—中国地质大学学报  相似文献   
127.
128.
129.
The Andes between 36°30′ and 37°S represent a Cretaceous fold and thrust belt strongly reactivated in the late Miocene. Most of the features that absorbed Neogene shortening were already uplifted in the late Cretaceous, as revealed by field mapping and confirmed by previous fission track analysis. This Andean section is formed by two sectors: a western-inner sector generated by the closure of the upper Oligocene-lower Miocene intra-arc Cura Mallín basin between the middle and late Miocene (Guañacos fold and thrust belt), and an eastern-outer sector, where late Triassic-early Jurassic extensional depocenters were exhumed in two discrete phases of contraction, in the latest early Cretaceous and late Miocene to the Present, respectively (Chos Malal fold and thrust belt). Late Miocene deformation has not homogeneously reactivated Cretaceous compressive structures, being minimal south of 37°30′S through the eastern-outer sector (southern continuation of the Chos Malal fold and thrust belt). The reason for such an inhomogeneous deformational evolution seems to be related to the development of a late Miocene shallow subduction regime between 34°30′ and 37°45′S, as it was proposed in previous studies. This shallow subduction zone is evidenced by the eastward expansion of the arc that was accompanied by the eastern displacement of the orogenic front at these latitudes. As a result, the Cretaceous fold and thrust belt were strongly reactivated north of 37°30′S producing the major topographic break along the Southern Central Andes.  相似文献   
130.
Tomoaki  Morishita  Shoji  Arai  Yoshito  Ishida 《Island Arc》2007,16(1):40-56
Abstract   Trace-element compositions of jadeite (±omphacite) in jadeitites from the Itoigawa-Ohmi district of Japan, analyzed by a laser-ablation inductively coupled plasma mass spectrometry technique showed chemical zoning within individual grains and variations within each sample and between different samples. Primitive mantle-normalized patterns of jadeite in the samples generally showed high large-ion lithophile element contents, high light rare earth element/heavy rare earth element ratios and positive anomalies of high field strength elements. The studied jadeitites have no signatures of the protolith texture or mineralogy. Shapes and distributions of minerals coupled with chemical zoning within grains suggest that the jadeitites were formed by direct precipitation of minerals from aqueous fluids or complete metasomatic modification of the precursor rocks by fluids. In either case, the geochemical characteristics of jadeite are highly affected by fluids enriched in both large-ion lithophile elements and high field strength elements. The specific fluids responsible for the formation of jadeitites are related to serpentinization by slab-derived fluids in subduction zones. This process is followed by dissolving high field strength elements in the subducting crust as the fluids continue to circulate into the subducting crusts and serpentinized peridotites. The fluids have variations in chemical compositions corresponding to various degrees of water–rock interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号