首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2647篇
  免费   526篇
  国内免费   447篇
测绘学   34篇
大气科学   51篇
地球物理   833篇
地质学   1617篇
海洋学   421篇
天文学   20篇
综合类   86篇
自然地理   558篇
  2024年   16篇
  2023年   61篇
  2022年   102篇
  2021年   122篇
  2020年   117篇
  2019年   135篇
  2018年   101篇
  2017年   125篇
  2016年   118篇
  2015年   123篇
  2014年   143篇
  2013年   191篇
  2012年   124篇
  2011年   147篇
  2010年   133篇
  2009年   134篇
  2008年   158篇
  2007年   181篇
  2006年   144篇
  2005年   108篇
  2004年   144篇
  2003年   102篇
  2002年   103篇
  2001年   82篇
  2000年   95篇
  1999年   64篇
  1998年   82篇
  1997年   67篇
  1996年   70篇
  1995年   72篇
  1994年   52篇
  1993年   41篇
  1992年   33篇
  1991年   20篇
  1990年   9篇
  1989年   26篇
  1988年   20篇
  1987年   9篇
  1986年   7篇
  1985年   11篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1976年   1篇
  1971年   2篇
  1954年   3篇
排序方式: 共有3620条查询结果,搜索用时 0 毫秒
91.
火山岩地震屏蔽层的转换波叠前时间偏移成像   总被引:2,自引:4,他引:2       下载免费PDF全文
谢飞  常旭  刘伊克 《地球物理学报》2008,51(6):1899-1908
在反射地震转换波资料处理中,准确求取共转换点一直是一个难题,采用叠前时间偏移技术能避免共转换点道集的抽取,而且能够使转换波归位到真正的反射点上,实现准确成像.本文针对火山岩地震屏蔽层的转换波成像问题,通过对转换波共近似转换点道集进行速度分析,建立了转换波叠前时间偏移的初始速度场,通过速度扫描和纵、横波速度比值扫描确定最佳的偏移速度场和纵、横波速度比值,实现了在火山岩高速层覆盖区域的转换波偏移成像.实际资料的成像结果表明,本文采用的近似转换点计算以及转换波叠前时间偏移方法是有效的.  相似文献   
92.
The saltation–abrasion model predicts rates of river incision into bedrock as an explicit function of sediment supply, grain size, boundary shear stress and rock strength. Here we use this experimentally calibrated model to explore the controls on river longitudinal profile concavity and relief for the simple but illustrative case of steady‐state topography. Over a wide range of rock uplift rates we find a characteristic downstream trend, in which upstream reaches are close to the threshold of sediment motion with large extents of bedrock exposure in the channel bed, while downstream reaches have higher excess shear stresses and lesser extents of bedrock exposure. Profile concavity is most sensitive to spatial gradients in runoff and the rate of downstream sediment fining. Concavity is also sensitive to the supply rate of coarse sediment, which varies with rock uplift rate and with the fraction of the total sediment load in the bedload size class. Variations in rock strength have little influence on profile concavity. Profile relief is most sensitive to grain size and amount of runoff. Rock uplift rate and rock strength influence relief most strongly for high rates of rock uplift. Analysis of potential covariation of grain size with rock uplift rate and rock strength suggests that the influence of these variables on profile form could occur in large part through their influence on grain size. Similarly, covariation between grain size and the fraction of sediment load in the bedload size class provides another indirect avenue for rock uplift and strength to influence profile form. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
93.
主要从太阳黑子活动、地震迁移、地震韵律和月相等各方面,对邢台地震的发震背景进行了分析。结果显示,这些背景特征是很突出的。认为地震的发生,可能受到多种因素的影响和制约,研究发震背景特征对于我们认识地震和预测未来地震都是有一定意义的。  相似文献   
94.
起伏地表下的直接叠前时间偏移   总被引:4,自引:9,他引:4       下载免费PDF全文
提出了一种新的叠前时间偏移方法和流程,可不必应用野外静校正,直接对起伏地表采集的地震数据进行叠前时间偏移.本文采用输入道成像方式,通过基于稳相点原理给出单道数据的走时和振幅计算方法,发展了一个表驱动的叠前时间偏移算法.偏移方法可依据同相轴是否被拉平确定叠加速度和修正近地表速度模型,也可依据拟成像的构造倾角,自适应地确定偏移孔径;后者既减少了偏移计算量,也压制了偏移噪声.文中用二维起伏地表的断陷盆地模型的理论数据验证了所发展方法的成像效果.  相似文献   
95.
地震叠前时间偏移的一种图形处理器提速实现方法   总被引:14,自引:11,他引:14       下载免费PDF全文
新近发展的图形处理器(GPU,Graphic Processing Unit)通用计算技术,现已日趋实用成型,并获得诸多应用领域的广泛关注.对油气勘探专项资料处理技术的运用而言,概因GPU与中央处理器(CPU)的计算性能的甚大差异,致使GPU这一通用计算技术在石油工业中的应用研究正在有效开展.本文仅借助于油气勘探中广泛使用的叠前时间偏移,旨在于扼要阐明其基于GPU应用的有效性;文中还提出一种利用GPU实现地震叠前时间偏移的软件构件方法,并针对非对称走时叠前时间偏移所拓展的应用软件提供一种具体实现架构.与以往用个人计算机(PC,Personal Computer)或者PC集群所用的叠前时间偏移相比,本文方法可甚大地提高计算效率,从而在石油物探资料处理中可显著地节约计算成本和维护费用.文中实际例证也表明,基于GPU进行高性能并行计算,当是适应目前石油工业中大规模计算需求的一个重要发展途径.  相似文献   
96.
对来自塔里木盆地北部5口钻井的部分中、新生代沉积岩岩芯样品进行了古地磁研究,通过对重磁化组分和特征剩磁组分与露头样品的比较,确定了井下样品的喜山期严重重磁化;并通过烃类分析和对磁性分选颗粒的扫描电镜观察,发现了与碳氢化合物有关的球形磁铁矿颗粒和具有黄铁矿格架颗粒的球形磁铁矿聚集体,从而认为重磁化与油气移聚相关,据此确认了喜山期的油气移聚.  相似文献   
97.
共接收点倾斜叠加波动方程偏移,本质上是一种叠前偏移方法.每给定一个斜率P,对经过叠前(动校正前)常规处理的地震记录中的各共接收点道集,沿直线t=τ+px进行倾斜叠加,就形成一个共接收点倾斜叠加剖面.对之进行波动方程偏移,该偏移剖面将代表地下真实构造.对一系列的p,我们可以得到一系列这样的偏移剖面.对它们作共接收点叠加,偏移叠加剖面的信噪比将超过水平叠加剖面.本文导出了在均匀、水平层状及非均匀介质条件下的共接收点倾斜叠加波动方程偏移算法.  相似文献   
98.
本文把Radon变换公式推广到任意n维的情况。同时结合n维Radon变换和摄动理论提出了一种既能用于地面资料又能用于VSP资料的偏移方法。  相似文献   
99.
有限元素法全倾角波动方程偏移   总被引:4,自引:1,他引:4       下载免费PDF全文
本文试图从两个方面提高波动方程偏移的效果:1.使用全方向波动方程进行偏移,使之适用于任意倾角界面的反射;2.使用有限元素法提高微分方程数值解法的精度。  相似文献   
100.
Ephemeral gully (EG) erosion has an important impact on agricultural soil losses and increases field surface hydrology connectivity and transport of pollutants to nearby water bodies. Watershed models including an EG component are scarce and not yet properly evaluated. The objective of this study is to evaluate the capacity of one such tool, AnnAGNPS, to simulate the evolution of two EG formed in a conservation tillage system. The dataset for model testing included runoff measurements and EG morphological characteristics during 3 years. Model evaluation focused on EG evolution of volume, width, and length model outputs, and included calibration and testing phases and a global sensitivity analysis (GSA). While the model did not fully reproduce width and length, the model efficiency to simulate EG volume was satisfactory for both calibration and testing phases, supporting the watershed management objectives of the model. GSA revealed that the most sensitive factors were EG depth, critical shear stress, headcut detachment exponent coefficient b, and headcut detachment leading coefficient a. For EG outputs the model was additive, showing low sensitivity to interactions between the inputs. Prediction of EG spatial evolution on conservation tillage systems requires improved development of gully erosion components, since many of the processes were developed originally for traditional tillage practices or larger channel systems. Our results identify the need for future research when EG form within conservation tillage systems, in particular to study gully headcut, soil erodibility, and width functions specific to these practices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号