首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1146篇
  免费   153篇
  国内免费   406篇
测绘学   86篇
大气科学   67篇
地球物理   186篇
地质学   1032篇
海洋学   193篇
天文学   5篇
综合类   48篇
自然地理   88篇
  2024年   5篇
  2023年   20篇
  2022年   45篇
  2021年   56篇
  2020年   51篇
  2019年   56篇
  2018年   52篇
  2017年   41篇
  2016年   47篇
  2015年   46篇
  2014年   51篇
  2013年   88篇
  2012年   79篇
  2011年   50篇
  2010年   57篇
  2009年   75篇
  2008年   86篇
  2007年   97篇
  2006年   85篇
  2005年   71篇
  2004年   70篇
  2003年   61篇
  2002年   60篇
  2001年   33篇
  2000年   32篇
  1999年   44篇
  1998年   39篇
  1997年   30篇
  1996年   18篇
  1995年   22篇
  1994年   25篇
  1993年   29篇
  1992年   17篇
  1991年   9篇
  1990年   11篇
  1989年   10篇
  1988年   11篇
  1987年   10篇
  1986年   6篇
  1985年   6篇
  1984年   1篇
  1977年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有1705条查询结果,搜索用时 11 毫秒
31.
We present the results of a detailed petrological study of a sparsely phyric basalt (MAPCO CH98-DR11) dredged along the Mid-Atlantic Ridge (30°41′N). The sample contains microphenocrysts of olivine that display four different rapid-growth morphologies. Comparison of these morphologies with those obtained in dynamic crystallization experiments allows us to constrain the thermal history of the sample. The dendritic morphology (swallowtail, chain and lattice olivine) is directly related to the final quenching during magma–seawater interaction. In contrast, the three other morphologies, namely the complex polyhedral crystal, the closed hopper and the complex swallowtail morphology result from several cycles of cooling–heating (corresponding to a maximum degree of undercooling of 20–25°C) during crystal growth. These thermal variations occurred before eruption and are interpreted to be the result of turbulent convection in a small magmatic body beneath the ridge. The results suggest that the Mid-Atlantic Ridge is underlain by a mush zone that releases batches of liquid during tectonic segregation. Aphyric basalts are emitted during eruptions controlled by the tectonic activity, whereas phyric basalts correspond to small fractions of magma from the mush zone mobilized by reinjections of primitive magmas.  相似文献   
32.
Large volumes of mare basalts are present on the surface of the moon, located preferentially in large impact basins. Mechanisms relating impact basins and mare basalt eruptions have previously been suggested: lunar impacts removed low-density material that may have inhibited eruption, and created cracks for fluid flow [Icarus 139 (1999) 246], and lunar basins have long been described as catchments for magma (e.g., [Rev. Geophys. Space Phys. 18 (1980) 107] and references therein). We present a new model for melt creation under near side lunar basins that is triggered by the impacts themselves. Magma can be produced in two stages. First, crater excavation depressurizes underlying material such that it may melt in-situ. Second, the cratered lithosphere rises isostatically, warping isotherms at the lithosphere-asthenosphere boundary which may initiate convection, in which adiabatic melting can occur. The first stage produces by far the largest volume of melt, but convective melting can continue for up to 350 Ma. We propose that giant impacts account for a large portion of the volume and longevity of mare basalt volcanism, as well as for several compositional groups, including high alumina, high titanium, KREEP-rich, and picritic magmas.  相似文献   
33.
峨嵋玄武岩同生流体包裹体在800℃爆裂后,2.0g/L NH4Cl溶液提取流体中Pt、Pd,C-410树脂富集-电感耦合等离子体质谱测定,方法相对误差小于25%。激光拉曼光谱与四级质谱测定包裹体的气液成分结果表明:流体中存在一定量的有机组分,这对Pt、Pd以有机螯合态形式进入流体提供了可能。  相似文献   
34.
A complete dismembered sequence of ophiolite is well exposed in the south Andaman region that mainly comprises ultramafic cumulates, serpentinite mafic plutonic and dyke rocks, pillow lava, radiolarian chert, and plagiogranite. Pillow lavas of basaltic composition occupy a major part of the Andaman ophiolite suite (AOS). These basalts are well exposed all along the east coast of southern part of the south AOS. Although these basalts are altered due to low-grade metamorphism and late hydrothermal processes, their igneous textures are still preserved. These basalts are mostly either aphyric or phyric in nature. Aphyric type exhibits intersertal or variolitic textures, whereas phyric variety shows porphyritic or sub-ophitic textures. The content of alkalies and silica classify these basalts as sub-alkaline basalts and alkaline basalts. A few samples show basaltic andesite, trachy-basalt, or basanitic chemical composition. High-field strength element (HFSE) geochemistry suggests that studied basalt samples are probably derived from similar parental magmas. Al2O3/TiO2 and CaO/TiO2 ratios classify these basalts as high-Ti type basalt. On the basis of these ratios and many discriminant functions and diagrams, it is suggested that the studied basalts, associated with Andaman ophiolite suite, were derived from magma similar to N-MORB and emplaced in the mid-oceanic ridge tectonic setting.  相似文献   
35.
The Kundal area of Malani Igneous Suite consists of volcano-plutonic rocks. Basalt flows and gabbro intrusives are associated with rhyolite. Both the basic rocks consist of similar mineralogy of plagioclase, clinopyroxene as essential and Fe-Ti oxides as accessories. Basalt displays sub-ophitic and glomeroporphyritic textures whereas gabbro exhibits sub-ophitic, porphyritic and intergrannular textures. They show comparable chemistry and are enriched in Fe, Ti and incompatible elements as compared to MORB/CFB. Samples are enriched in LREE and slightly depleted HREE patterns with least significant positive Eu anomalies. Petrographical study and petrogenetic modeling of [Mg]-[Fe], trace and REE suggest cogenetic origin of these basic rocks and they probably derived from Fe-enriched source with higher Fe/Mg ratio than primitive mantle source. Thus, it is concluded that the basic volcano-plutonic rocks of Kundal area are the result of a low to moderate degree (< 30%) partial melting of source similar to picrite/komatiitic composition. Within plate, anorogenic setting for the basic rocks of Kundal area is suggested, which is in conformity with the similar setting for Malani Igneous Suite.  相似文献   
36.
Sr and Nd isotopic compositions of one trachyte, eight phonolites and five basalts have been measured. The isotopic characteristics of the trachyte can be explained by a combined assimilation–fractional crystallization process within an upper crustal magmatic chamber. Some phonolites display isotopic signatures identical to basalts, suggesting that they have been protected against any crustal assimilation during their formation. Some others have low Sr contents, whereas they are enriched in radiogenic Sr (0.70451<87Sr/86Sri<0.71192), and display basaltic 143Nd/144Nd ratios. Both observations could be explained by very strong alkali feldspar fractionation and by subsequent very low assimilation of surrounding rocks (between 0.3 and 4%) during intrusion. To cite this article: J.-M. Dautria et al., C. R. Geoscience 336 (2004).  相似文献   
37.
38.
39.
Hidehisa  Mashima 《Island Arc》2005,14(2):165-177
Abstract   The major element and compatible trace element compositions of the northwest Kyushu basalts (NWKBs) collected from Saga-Futagoyama were analyzed to examine the petrogenesis of these basalts. Although nepheline-normative alkaline basalts are not found in the basalts from Saga-Futagoyama, the Saga-Futagoyama basalts almost cover the major element variations of NWKBs. The basalts can be chemically divided into two groups: an Fe-poor group (IPG) and an Fe-rich group (IRG). The compositional variation of IPG basalts is essentially controlled by the partial melting of the source as suggested by the following: (i) bulk rock MgO, FeO and NiO compositions indicate that some IPG samples were equilibrated with mantle olivine; and (ii) correlations between Al2O3, CaO and MgO are consistent with those of experimental partial melts of peridotites. The inconsistent behaviors of the elements compatible with clinopyroxene (Cpx), such as V (Sc and Cu), preclude the significant role of the fractional crystallization of Cpx and spinel in IPG variation. IPG basalts have low Al and high Fe concentrations compared to the products of melting experiments involving peridotites and pyroxenites, suggesting that the IPG source would have a lithology and bulk rock composition different from those of typical peridotites and pyroxenites. IRG basalts have negative correlations between Fe2O3* and MgO, and between V and Fe2O3*/MgO, indicating that IRG basalts would have fractionated Cpx. However, the anomalously Fe-rich feature of IRG basalts compared with NWKBs collected from other areas suggests that the role of Cpx fractionation in NWKBs is minor. Relatively low melting temperatures would have principally caused the large chemical variation of NWKBs.  相似文献   
40.
Digital elevation models and topographic pro?les of a beach with intertidal bar and trough (ridge‐and‐runnel) morphology in Merlimont, northern France, were analysed in order to assess patterns of cross‐shore and longshore intertidal bar mobility. The beach exhibited a pronounced dual bar–trough system that showed cross‐shore stationarity. The bars and troughs were, however, characterized by signi?cant longshore advection of sand under the in?uence of suspension by waves and transport by strong tide‐ and wind‐driven longshore currents. Pro?le changes were due in part to the longshore migration of medium‐sized bedforms. The potential for cross‐shore bar migration appears to be mitigated by the large size of the two bars relative to incident wave energy, which is modulated by high vertical tidal excursion rates on this beach due to the large tidal range (mean spring tidal range = 8·3 m). Cross‐shore bar migration is also probably hindered by the well‐entrenched troughs which are maintained by channelled high‐energy intertidal ?ows generated by swash bores and by tidal discharge and drainage. The longshore migration of intertidal bars affecting Merlimont beach is embedded in a regional coastal sand transport pathway involving tidal and wind‐forced northward residual ?ows affecting the rectilinear northern French coast in the eastern English Channel. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号