首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1958篇
  免费   254篇
  国内免费   480篇
测绘学   113篇
大气科学   273篇
地球物理   452篇
地质学   766篇
海洋学   220篇
天文学   675篇
综合类   114篇
自然地理   79篇
  2024年   13篇
  2023年   34篇
  2022年   62篇
  2021年   69篇
  2020年   50篇
  2019年   55篇
  2018年   53篇
  2017年   78篇
  2016年   80篇
  2015年   82篇
  2014年   91篇
  2013年   89篇
  2012年   80篇
  2011年   82篇
  2010年   83篇
  2009年   139篇
  2008年   111篇
  2007年   167篇
  2006年   164篇
  2005年   127篇
  2004年   131篇
  2003年   130篇
  2002年   85篇
  2001年   99篇
  2000年   120篇
  1999年   118篇
  1998年   77篇
  1997年   31篇
  1996年   42篇
  1995年   36篇
  1994年   23篇
  1993年   17篇
  1992年   17篇
  1991年   16篇
  1990年   14篇
  1989年   8篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1954年   2篇
排序方式: 共有2692条查询结果,搜索用时 12 毫秒
161.
A short summary of recent progress in measuring and understanding turbulence during magnetic reconnection in laboratory plasmas is given. Magnetic reconnection is considered as a primary process to dissipate magnetic energy in laboratory and astrophysical plasmas. A central question concerns why the observed reconnection rates are much faster than predictions made by classical theories, such as the Sweet–Parker model based on MHD with classical Spitzer resistivity. Often, the local resistivity is conjectured to be enhanced by turbulence to accelerate reconnection rates either in the context of the Sweet–Parker model or by facilitating setup of the Pestchek model. Measurements at a dedicated laboratory experiment, called MRX or Magnetic Reconnection Experiment, have indicated existence of strong electromagnetic turbulence in current sheets undergoing fast reconnection. The origin of the turbulence has been identified as right-hand polarized whistler waves, propagating obliquely to the reconnecting field, with a phase velocity comparable to the relative drift velocity. These waves are consistent with an obliquely propagating electromagnetic lower-hybrid drift instability driven by drift speeds large compared to the Alfven speed in high-beta plasmas. Interestingly, this instability may explain electromagnetic turbulence also observed in collisionless shocks, which are common in energetic astrophysical phenomena.  相似文献   
162.
We present the first calculation of the kinetic Sunyaev–Zel’dovich (kSZ) effect due to the inhomogeneus reionization of the universe based on detailed large-scale radiative transfer simulations of reionization. The resulting sky power spectra peak at ℓ = 2000–8000 with maximum values of [ℓ(ℓ + 1)C/(2π)]max  4–7 × 10 −13. The scale roughly corresponds to the typical ionized bubble sizes observed in our simulations, of 5–20 Mpc. The kSZ anisotropy signal from reionization dominates the primary CMB signal above ℓ = 3000. At large-scales the patchy kSZ signal depends only on the source efficiencies. It is higher when sources are more efficient at producing ionizing photons, since such sources produce larger ionized regions, on average, than less efficient sources. The introduction of sub-grid gas clumping in the radiative transfer simulations produce significantly more power at small-scales, but has little effect at large-scales. The patchy reionization kSZ signal is dominated by the post-reionization signal from fully-ionized gas, but the two contributions are of similar order at scales ℓ  3000 − 104, indicating that the kSZ anisotropies from reionization are an important component of the total kSZ signal at these scales.  相似文献   
163.
C. Pryke   《New Astronomy Reviews》2006,50(11-12):984
QUaD is a 31 pixel array of polarization sensitive bolometer pairs coupled to a 2.6 m Cassegrain radio telescope. The telescope is attached to the mount originally built for the DASI experiment and located at the South Pole. The telescope system is described along with details of instrumental characterization studies which we have performed. A first season of CMB observations is complete and the second season underway. Details of the current status of these observations and their analysis are presented.  相似文献   
164.
Fast heuristically weighted, or pseudo-C, estimators are a frequently used method for estimating power spectra in CMB surveys with large numbers of pixels. Recently, Challinor and Chon showed that the E–B mixing in these estimators can become a dominant contaminant at low noise levels, ultimately limiting the gravity wave signal which can be detected on a finite patch of sky. We define a modified version of the estimators which eliminates E–B mixing and is near-optimal at all noise levels.  相似文献   
165.
The quality of CMB observations has improved dramatically in the last few years, and will continue to do so in the coming decade. Over a wide range of angular scales, the uncertainty due to instrumental noise is now small compared to the cosmic variance. One may claim with some justification that we have entered the era of precision CMB cosmology. However, some caution is still warranted: The errors due to residual foreground contamination in the CMB power spectrum and cosmological parameters remain largely unquantified, and the effect of these errors on important cosmological parameters such as the optical depth τ and spectral index ns is not obvious. A major goal for current CMB analysis efforts must therefore be to develop methods that allow us to propagate such uncertainties from the raw data through to the final products. Here we review a recently proposed method that may be a first step towards that goal.  相似文献   
166.
We review recent findings that the universe on its largest scales shows hints of violations of statistical isotropy, in particular alignment with the geometry and direction of motion of the solar system, and missing power at scales greater than 60°. We present the evidence, attempts to explain it using astrophysical, cosmological or instrumental mechanisms, and prospects for future understanding.  相似文献   
167.
168.
169.
Using a set of compilations of measurements for extragalactic radio sources, we construct all-sky maps of the Faraday rotation produced by the Galactic magnetic field. In order to generate the maps, we treat the radio source positions as a kind of 'mask' and construct combinations of spherical harmonic modes that are orthogonal on the masked sky. As long as relatively small multipoles are used, the resulting maps are quite stable to changes in the selection criteria for the sources, and show clearly the structure of the local Galactic magnetic field. We also suggest the use of these maps as templates for cosmic microwave background (CMB) foreground analysis, illustrating the idea with a cross-correlation analysis between the Wilkinson Microwave Anisotropy Probe ( WMAP ) data and our maps. We find a significant cross-correlation, indicating the presence of a significant residual contamination.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号