首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3751篇
  免费   605篇
  国内免费   1936篇
测绘学   6篇
大气科学   1篇
地球物理   364篇
地质学   5524篇
海洋学   126篇
天文学   5篇
综合类   163篇
自然地理   103篇
  2024年   29篇
  2023年   86篇
  2022年   105篇
  2021年   132篇
  2020年   154篇
  2019年   184篇
  2018年   181篇
  2017年   174篇
  2016年   212篇
  2015年   192篇
  2014年   222篇
  2013年   268篇
  2012年   305篇
  2011年   236篇
  2010年   209篇
  2009年   226篇
  2008年   247篇
  2007年   271篇
  2006年   301篇
  2005年   247篇
  2004年   234篇
  2003年   215篇
  2002年   170篇
  2001年   188篇
  2000年   170篇
  1999年   189篇
  1998年   149篇
  1997年   144篇
  1996年   129篇
  1995年   114篇
  1994年   124篇
  1993年   109篇
  1992年   84篇
  1991年   59篇
  1990年   54篇
  1989年   46篇
  1988年   25篇
  1987年   39篇
  1986年   24篇
  1985年   13篇
  1984年   7篇
  1983年   9篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   7篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有6292条查询结果,搜索用时 15 毫秒
101.
New data on the metamorphic petrology and zircon geochronology of high‐grade rocks in the central Mozambique Belt (MB) of Tanzania show that this part of the orogen consists of Archean and Palaeoproterozoic material that was structurally reworked during the Pan‐African event. The metamorphic rocks are characterized by a clockwise P–T path, followed by strong decompression, and the time of peak granulite facies metamorphism is similar to other granulite terranes in Tanzania. The predominant rock types are mafic to intermediate granulites, migmatites, granitoid orthogneisses and kyanite/sillimanite‐bearing metapelites. The meta‐granitoid rocks are of calc‐alkaline composition, range in age from late Archean to Neoproterozoic, and their protoliths were probably derived from magmatic arcs during collisional processes. Mafic to intermediate granulites consist of the mineral assemblage garnet–clinopyroxene–plagioclase–quartz–biotite–amphibole ± K‐feldspar ± orthopyroxene ± oxides. Metapelites are composed of garnet‐biotite‐plagioclase ± K‐feldspar ± kyanite/sillimanite ± oxides. Estimated values for peak granulite facies metamorphism are 12–13 kbar and 750–800 °C. Pressures of 5–8 kbar and temperatures of 550–700 °C characterize subsequent retrogression to amphibolite facies conditions. Evidence for a clockwise P–T path is provided by late growth of sillimanite after kyanite in metapelites. Zircon ages indicate that most of the central part of the MB in Tanzania consists of reworked ancient crust as shown by Archean (c. 2970–2500 Ma) and Palaeoproterozoic (c. 2124–1837 Ma) protolith ages. Metamorphic zircon from metapelites and granitoid orthogneisses yielded ages of c. 640 Ma which are considered to date peak regional granulite facies metamorphism during the Pan‐African orogenic event. However, the available zircon ages for the entire MB in East Africa and Madagascar also document that peak metamorphic conditions were reached at different times in different places. Large parts of the MB in central Tanzania consist of Archean and Palaeoproterozoic material that was reworked during the Pan‐African event and that may have been part of the Tanzania Craton and Usagaran domain farther to the west.  相似文献   
102.
Tibet consists of several terranes that progressively collided with the southern margin of Asia during the Mesozoic following the closure of intervening ocean basins. This Mesozoic amalgamation history, as well as the extent to which it may have contributed to crustal thickening prior to the Cenozoic Indo‐Asia collision, remains poorly constrained and strongly debated. Here, we present a metamorphic petrological and U‐Pb zircon geochronological study of the Amdo metamorphic complex, one of the few exposures of high‐grade metamorphic rocks in central Tibet, located along the Bangong suture between the Qiangtang terrane to the north and the Lhasa terrane to the south. U‐Pb ages of metamorphic zircon in gneiss constrain the timing of peak metamorphism at c. 178 Ma, prior to the Early Cretaceous collision between the two terranes. Peak P–T conditions of gneiss within the metamorphic complex are constrained by conventional as well as multi‐equilibrium (THERMOCALC v.3.21 and v.3.33) geothermobarometry of two samples of garnet‐amphibolite. Whereas THERMOCALC v.3.21 yields similar results as conventional geothermobarometry, THERMOCALC v. 3.33 yields dramatically lower pressures, mostly due to the change in the amphibole activity model used. Using THERMOCALC v.3.21, the two garnet‐amphibolite samples yield similar P–T conditions of 0.83 ± 0.06 GPa at 646 ± 33 °C and 0.97 ± 0.06 GPa at 704 ± 35 °C. Plagioclase coronas on the garnet‐amphibolite sample with lower peak P–T conditions indicate a period of isothermal decompression. Additional geothermometry on two garnet‐free amphibolites yielded similar temperatures of 700–750 °C and suggests similar P–T conditions across most of the complex. However, two exposures of garnet‐kyanite schist located along the southern edge of the metamorphic complex yielded slightly lower peak conditions of 0.75–0.85 GPa and 550–610 °C. Petrographic and field relations suggest the difference in metamorphic grade between the schist and gneiss is due to an intervening thrust fault. The existence of the thrust fault indicates that at least part of the exhumation of the complex was due to contractional deformation, possibly during the Lhasa‐Qiangtang collision. Our P–T–t results indicate the occurrence of a significant Early Jurassic tectonothermal event along the southern, active margin of the Qiangtang terrane that deeply buried the Amdo rocks. We suggest that the metamorphism is a result of arc‐related tectonism that may have been regionally extensive along the southern Qiangtang terrane; geological records of this tectonism may be rarely exposed along strike because of a lack of exhumation or subsequent depositional and structural burial.  相似文献   
103.
对张广才岭五道岭组火山岩进行锆石U--Pb LA--ICP--MS 年代学和岩石地球化学研究,以确定该组火山岩形成的时代和构造背景。选取样品中的锆石均呈自形--半自形晶,具有清晰的振荡生长环带和较高的Th /U 比值( 0. 52 ~ 2. 28) ,暗示其岩浆成因。测年结果显示,五道岭组火山岩形成于289 ± 3 Ma,是早二叠世岩浆活动的产物。火山岩的岩石组合为玄武岩--流纹岩,显示双峰式火山岩的特点,属于高钾钙碱性--钾玄岩系列,玄武岩具有富集Rb、K 等大离子亲石元素( LILE) ,亏损Nb、Ta 等高场强元素( HFSE) 的特征; 流纹岩呈负铕异常,富集Rb、Th、U 和K 等大离子亲石元素( LILE) ,亏损Nb、Ta 和Ti 等高场强元素( HFSE) 及Sr、P 元素,并显示A 型流纹岩的特点。结合该时期区域构造演化史,火山岩地球化学特征揭示了五道岭组火山岩的形成与岛弧环境下的局部伸展作用有关,这种构造背景是古亚洲洋板块俯冲于松嫩-张广才岭-佳木斯陆块之下造成的。  相似文献   
104.
<正>The rocks form as amphibolite±garnet±epidote and orthogneisses in the Pan-African basement of the Bitlis Massif.The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ranging from calcalkaline basalt to andesite in composition. Petrochemically,the rocks can be classified as group 1(low Zr and La) and group 2(high Zr and La), all showing various enrichments in large ion lithophiles and light rare earth elements,and a depletion in high-field strength elements,suggestive of a destructive plate margin setting.The protoliths of the all samples might have formed mostly by the partial melting of an enriched source,possibly coupled with the fractional crystallization of plagioclase,apatite,and titaniferous magnetite±olivine±clinopyroxene±amphibole in relation with subduction-related magmatism neighboring the Andeantype active margins of Gondwana.The group 2 samples could,however,be generated by a relatively lower degree of the partial melting of an inhomogeneous source with a preponderance of a high-level, fractional crystallization process in comparison to group 1.The protoliths of the samples were metamorphosed up to amphibolite facies conditions,which destroys original igneous texture and mineral assemblages.Geothermobarometric calculations show that the metamorphic rocks are finally equilibrated between 540 and 610℃and~5 kbars,following a clockwise P-T-t path.  相似文献   
105.
桐柏碰撞造山带及其邻区变形特征与构造格局   总被引:1,自引:2,他引:1  
桐柏碰撞造山带及其邻区可以划分为九个大地构造单元,自北向南分别是:华北克拉通南缘岩石构造单元——宽坪岩群、具弧后盆地性质的二郎坪岩石构造单元、具岛弧性质的秦岭杂岩单元、龟山岩组和南湾岩组构成的俯冲前缘楔构造带、构造混杂岩带、桐柏北部高压岩片单元、桐柏核部杂岩单元、桐柏南部高压岩片单元以及随州构造变形带。根据详细的构造解析以及新的地质年代学资料,本文将中生代以来的构造变形划分为五幕,前两幕变形主要发育在构造混杂岩带以南的各个岩石构造单元中,之后的三幕变形则波及整个研究区。第一幕变形的时间约为255~238Ma,以发育区域上透入性的片理及北西西向的拉伸线理为主,并导致了高压岩片早期自西向东的挤出。第二幕变形的时间约为230~215Ma,以自北向南的逆冲推覆构造为主,使得高压岩片进一步垂向抬升。第三幕变形应早于下侏罗统,以近北西西向的宽缓褶皱为主要特征,该幕变形期间桐柏核部杂岩及其两侧高压岩片单元发生同步的抬升。第四幕变形大致发生在140~130Ma之间,主要表现为桐柏核部杂岩两侧走滑型韧性剪切带的活动,桐柏核部杂岩表现出向东的挤出。第五幕变形发生在120~80Ma,表现为北西向及北东向的脆性断裂活动,并切割以上所有构造形迹。桐柏高压岩片的抬升剥露受多幕变形控制,呈阶段性的抬升。  相似文献   
106.
河南焦作云台山早前寒武纪变质基底锆石SHRIMP U-Pb年龄   总被引:4,自引:0,他引:4  
高林志  赵汀  万渝生  赵逊  马寅生  杨守政 《地质通报》2005,24(12):1089-1093
应用离子探针技术,对华北太行山南缘钾长石化长英质副片麻岩和钾长石化片麻状奥长花岗岩进行了锆石年龄测定。钾长石化长英质副片麻岩的变质原岩为泥砂质碎屑沉积岩,其形成时代很可能为新太古代。碎屑锆石普遍存在强烈铅丢失,靠近上交点的5个数据点207Pb/206Pb加权平均年龄为3399Ma±8Ma,代表了物源区组成的时代。钾长石化片麻状奥长花岗岩2组锆石207Pb/206Pb加权平均年龄分别为2511Ma±13Ma(岩体形成时代)和2735Ma±16Ma(残余锆石年龄),分别代表该岩体形成时代和残余锆石年龄。新的资料支持了华北克拉通中部造山带太古宙地质体与其东部陆块存在亲缘关系的认识。  相似文献   
107.
吉林省永吉县头道沟地区出露许多与头道沟岩组相伴产出的镁铁—超镁铁质岩,鉴于其处于长春-延吉构造带附近而受到业内关注,但由于缺少高精度年代学资料,制约了对区域大地构造的深入研究。本文采用锆石U-Pb(LA-ICP-MS)方法,对镁铁—超镁铁质岩进行了年代学研究。变质辉绿岩年龄为270±5 Ma,变质橄榄岩中捕获锆石最小年龄为297 Ma,考虑岩石组合及二者紧密相伴产出,认为二者均形成于中二叠世。镁铁—超镁铁质岩中捕获的锆石记录了华北克拉通及其北缘多次重要的构造热事件。其中,变辉绿岩中获得446±6 Ma的年龄与变质橄榄岩中获得的不一致线下交点434±240 Ma年龄共同对应了华北克拉通北缘早古生代的重要构造岩浆热事件;大量的1.8~2.4Ga年龄对应古元古代辽吉造山带热事件;1377 Ma、1542 Ma与蓟县系建造时代对应;869~997 Ma与青白口系建造时代对应;在变质辉绿岩中还存在众多3.0~3.2Ga锆石年龄。分析上述年龄结构及龙岗陆块北缘古生代地质体分布特征,推测研究区深部可能存在古老的变质基底,同时也表明研究区出露的镁铁—超镁铁质岩形成于陆内构造环境,而非蛇绿岩的组成成分,这对深化区域大地构造研究具有重要意义。  相似文献   
108.
Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include(1) the famous Kolar mine and the world class Hutti deposit;(2) small mines at HiraBuddini, Uti, Ajjanahalli, and Guddadarangavanahalli;(3) prospects at Jonnagiri; and(4) old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous(H_2O + CO_2 ± CH_4 + NaCl) ore fluids,which precipitated gold and altered the host rocks in a narrow P-T window of 0.7-2.5 kbar and 215-320℃. While the calculated fluid O-and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs.magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite, pyrite and arsenopyrite point toward operation of fault-valves that caused pressure fluctuation-induced fluid phase separation, which acted as the dominant process of gold precipitation,apart from fluid-rock sulfidation reactions. Therefore, results from geochemistry of hydrothermal minerals and those from fluid inclusion microthermometry corroborate in constraining source of ore fluid,nature of gold transport(by Au-bisulfide complex) and mechanism of gold ore formation in the Dharwar Craton.  相似文献   
109.
对分布于江南造山带东段江绍断裂带附近的浙江诸暨地区石角-璜山侵入岩进行了LA-ICP-MS锆石U-Pb定年工作,石角角闪辉石岩和璜山石英闪长岩的结晶年龄分别为844Ma±3Ma和818Ma±6Ma。该年龄结果表明,石角村附近的超镁铁质岩(包括球状辉闪岩)与其外围的闪长岩可能并非同时形成。江绍断裂带附近分布的多个闪长岩体的形成时代介于930~820Ma之间。对这些超镁铁质岩和闪长岩的精细岩石成因研究将有助于揭示扬子和华夏在新元古代时期的拼接过程。  相似文献   
110.
安徽铜陵矿集区是我国最著名的铜、金、铁产地之一,成矿与岩浆作用关系密切.本次对铜陵地区中生代侵入岩进行了系统的矿物学、岩石学和元素地球化学研究.结果表明:①本区岩浆岩主要为辉石(二长)闪长岩( SiO2≤55%)、石英(二长)闪长岩(SiO255%~65%)和花岗闪长岩(SiO2≥65%)三种岩石组合,其矿物成分主要为...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号