首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8424篇
  免费   1781篇
  国内免费   4111篇
测绘学   52篇
大气科学   29篇
地球物理   1262篇
地质学   11823篇
海洋学   255篇
天文学   8篇
综合类   466篇
自然地理   421篇
  2024年   40篇
  2023年   143篇
  2022年   236篇
  2021年   322篇
  2020年   321篇
  2019年   475篇
  2018年   356篇
  2017年   357篇
  2016年   481篇
  2015年   430篇
  2014年   592篇
  2013年   593篇
  2012年   662篇
  2011年   639篇
  2010年   501篇
  2009年   639篇
  2008年   640篇
  2007年   699篇
  2006年   670篇
  2005年   554篇
  2004年   508篇
  2003年   517篇
  2002年   417篇
  2001年   415篇
  2000年   403篇
  1999年   437篇
  1998年   393篇
  1997年   327篇
  1996年   306篇
  1995年   230篇
  1994年   223篇
  1993年   177篇
  1992年   139篇
  1991年   111篇
  1990年   79篇
  1989年   70篇
  1988年   68篇
  1987年   51篇
  1986年   32篇
  1985年   20篇
  1984年   15篇
  1983年   9篇
  1979年   1篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
141.
A double exponential fitting model (DEFM) capable of expressing the non-linear stress-stiffness relationship of geomaterials has been proposed by Shibuya et al. (1997). The model comprises two material constants; the elastic stiffness at very small strains and the strength, together with other free parameters to determine the complete stress-stiffness relationship. In this paper, the capability of the original function used for DEFM in simulating the tangent stiffness-stress relationship of geomaterials is first discussed. Second, the methods for determining the free model parameters, as well as its conversion to obtain a stress-strain relationship are proposed. The applicability of DEFM to predicting non-linear stress-stiffness relationship is examined in detail in a total of forty-nine fitting cases of compression test data on sedimentary rock, artificial soft rock and soft clay. It is found that the DEFM is effective in expressing the non-linear stress-stiffness relationship of various kinds of geomaterials at small to intermediate strains, say less than 0.5%. The superiority of this model compared to other fitting models currently in use is also demonstrated in some of the fitting cases.  相似文献   
142.
Creation of pathways for melt to migrate from its source is the necessary first step for transport of magma to the upper crust. To test the role of different dehydration‐melting reactions in the development of permeability during partial melting and deformation in the crust, we experimentally deformed two common crustal rock types. A muscovite‐biotite metapelite and a biotite gneiss were deformed at conditions below, at and above their fluid‐absent solidus. For the metapelite, temperatures ranged between 650 and 800 °C at Pc=700 MPa to investigate the muscovite‐dehydration melting reaction. For the biotite gneiss, temperatures ranged between 850 and 950 °C at Pc=1000 MPa to explore biotite dehydration‐melting under lower crustal conditions. Deformation for both sets of experiments was performed at the same strain rate (ε.) 1.37×10?5 s?1. In the presence of deformation, the positive ΔV and associated high dilational strain of the muscovite dehydration‐melting reaction produces an increase in melt pore pressure with partial melting of the metapelite. In contrast, the biotite dehydration‐melting reaction is not associated with a large dilational strain and during deformation and partial melting of the biotite gneiss melt pore pressure builds more gradually. Due to the different rates in pore pressure increase, melt‐enhanced deformation microstructures reflect the different dehydration melting reactions themselves. Permeability development in the two rocks differs because grain boundaries control melt distribution to a greater extent in the gneiss. Muscovite‐dehydration melting may develop melt pathways at low melt fractions due to a larger volume of melt, in comparison with biotite‐dehydration melting, generated at the solidus. This may be a viable physical mechanism in which rapid melt segregation from a metapelitic source rock can occur. Alternatively, the results from the gneiss experiments suggest continual draining of biotite‐derived magma from the lower crust with melt migration paths controlled by structural anisotropies in the protolith.  相似文献   
143.
We formulate an algorithm for the calculation of stable phase relations of a system with constrained bulk composition as a function of its environmental variables. The basis of this algorithm is the approximate representation of the free energy composition surfaces of solution phases by inscribed polyhedra. This representation leads to discretization of high variance phase fields into a continuous mesh of smaller polygonal fields within which the composition and physical properties of the phases are uniquely determined. The resulting phase diagram sections are useful for understanding the phase relations of complex metamorphic systems and for applications in which it is necessary to establish the variations in rock properties such as density, seismic velocities and volatile‐content through a metamorphic cycle. The algorithm has been implemented within a computer program that is general with respect to both the choice of variables and the number of components and phases possible in a system, and is independent of the structure of the equations of state used to describe the phases of the system.  相似文献   
144.
J. -A. Wang  H. D. Park   《Engineering Geology》2002,63(3-4):291-300
The permeability of sedimentary rocks during triaxial compression tests was investigated to relate it to the complete strain–stress process. It was found that the permeability was not constant, but varied with the stress and strain states in the rocks. Prior to the peak strength, the permeability decreases with increasing load. A dramatic increase in permeability occurs during the strain softening period. In the present study, in situ measurements of fluid flow and pressure in floor strata was carried out in a double longwall mining face in the Yangzhuang colliery. These measurements show that both the strata pressure and the position with respect to the mining face influence the hydrogeologic properties. The permeability increased in the floor strata behind the mining face because those mining induced fractures opened as the strata pressure decreased. To better understand this change in hydraulic behavior around the mining faces, 3-D numerical modeling was carried out. The model provides the general picture of the stress distribution and failure zone both in the floor and roof strata. The field and model results demonstrate the importance of changes in the stress and strain states on the hydrogeology of a site.  相似文献   
145.
Giant landslides are significant hazards associated with many active volcanic edifices. We describe a similar feature on ancient (>4 Ma) volcanic deposits subject to active tectonism. The landslide is approximately 3 km long by 1 km wide, with an estimated depth of 400 m. Side margins are straight and parallel, mimicking regional structure; narrow valleys incised down these margins provide low-strength side-release surfaces. Between these is a giant slump consisting of at least four, largely intact, discrete blocks that have moved down-dip a distance of >500 m. A series of flows with areal extents ranging from 0.01 to 0.5 km2 extends from the front of the failure. The materials represent an eroded sequence of andesite flows on the flanks of a stratovolcano. These have undergone two phases of hydrothermal alteration, and are deeply weathered to low-density (1040±80 kg m−3) silt (59%) and clay (35%) materials with strength properties typical of weathered silts (c=26±3 kN m−2; φ=42±8°). The size and location of this landslide preclude detailed geotechnical investigation of the failure. The worth of numerical stability analysis as an alternative technique in assessing the nature of the failure and hence the risk it poses to nearby communities is investigated. Sensitivity analysis identified likely conditions under which initial failure may have occurred: analyses for sensitivity to strength and earthquake acceleration needed conversion to critical combinations (F=1.0) of water table and strength/acceleration to remove the overriding influence of water table fluctuations. Failure was likely initiated either by a high water table level (83-84%), or some combination of intensity VII-IX earthquake waves together with water table heights of 40-80%. A general hazard assessment indicates that the risk associated with creep and catastrophic failure of the main mass is small, whereas the risk from flow failures near the toe of the landslide may be high. Important parameters (hydrological regime, flow failure morphology, age of initiation, and rates of movement) requiring closer investigation are identified. Development of a model is crucial to assessing the hazard associated with a feature such as that described here. With limited resources, a detailed stability analysis is a powerful tool as an initial stage in hazard analysis.  相似文献   
146.
内蒙古达茂旗宝音图岩群是在达茂旗、查干呼绍地区 1:5万区调和白云鄂博幅 1:2 5万区调过程中从过去的巴特敖包群和白云鄂博群未分岩组解体出来的中级变质岩系。通过对宝音图岩群中阳起钠长片岩、二云片岩 (原岩均为基性火山岩 )进行单颗粒锆石U -Pb法年龄测定 ,获得了两条不一致线上交点年龄 (2 486± 42 )Ma、(2 496± 2 6 )Ma ,代表了宝音图岩群基性火山岩及宝音图岩群的形成时代 ;在不一致线之外不同成因的锆石的2 0 7Pb/ 2 0 6Pb表面年龄 (2 2 2 7± 15 )Ma ,寓示着 2 2 0 0Ma左右发生了一次区域性变质热事件 ;下交点年龄 (319±486 )Ma和 (40 6± 46 )Ma ,代表了 2 5 0~ 480Ma时期该区大面积岩浆侵位及宝音图岩群后期变形变质改造的时期 ,两个年龄样的获得为研究古元古代古陆的裂解及白云鄂博海槽的形成提供了直接依据。  相似文献   
147.
The newly discovered three alkali-rich intrusive rock belts in the Mt. Kunlun Mt.Altun region of southern Xinjiang are the Lapeiquan-Yitunbulak alkali-rich intrusive rock belt,the Gez-Taxkorgan alkali-rich intrusive rock belt and the Beilisai-Abulash alkali-rich intrusive rock belt. The former two belts were formed during the Yanshanian period, and the third one was formed during the Himalayan period, which is the youngest alkali-rich intrusive rock belt in China. The discovery of the alkali-rich intrusive rock belts is of great significance in shedding light on the history of tectono-magmatic activities in this region.  相似文献   
148.
Aeromagnetic signatures over the Edward VII Peninsula (E7) provide new insight into the largely ice-covered and unexplored eastern flank of the Ross Sea Rift (RSR). Positive anomalies, 10–40 km in wavelength and with amplitudes ranging from 50 to 500 nT could reveal buried Late Devonian(?)–Early Carboniferous Ford Granodiorite plutons. This is suggested by similar magnetic signature over exposed, coeval Admiralty Intrusives of the Transantarctic Mountains (TAM). Geochemical data from mid-Cretaceous Byrd Coast Granite, contact metamorphic effects on Swanson Formation and hornblende-bearing granitoid dredge samples strengthen this magnetic interpretation, making alternative explanations less probable. These magnetic anomalies over formerly adjacent TAM and western Marie Byrd Land (wMBL) terranes resemble signatures typically observed over magnetite-rich magmatic arc plutons. Shorter wavelength (5 km) 150 nT anomalies could speculatively mark mid-Cretaceous mafic dikes of the E7, similar to those exposed over the adjacent Ford Ranges. Anomalies with amplitudes of 100–360 nT over the Sulzberger Bay and at the margin of the Sulzberger Ice Shelf likely reveal mafic Late Cenozoic(?) volcanic rocks emplaced along linear rift fabric trends. Buried volcanic rock at the margin of the interpreted half-graben-like “Sulzberger Ice Shelf Block” is modelled in the Kizer Island area. The volcanic rock is marked by a coincident positive Bouguer gravity anomaly. Late Cenozoic volcanic rocks over the TAM, in the RSR, and beneath the West Antarctic Ice Sheet exhibit comparable magnetic anomaly signature reflecting regional West Antarctic Rift fabric. Interpreted mafic magmatism of the E7 is likely related to mid-Cretaceous and Late Cenozoic regional crustal extension and possible mantle plume activity over wMBL. Magnetic lineaments of the E7 are enhanced in maximum horizontal gradient of pseudo-gravity, vertical derivative and 3D Euler Deconvolution maps. Apparent vertical offsets in magnetic basement at the location of the lineaments and spatially associated mafic dikes and volcanic rocks result from 2.5D magnetic modelling. A rift-related fault origin for the magnetic lineaments, segmenting the E7 region into horst and graben blocks, is proposed by comparison with offshore seismic reflection, marine gravity, on-land gravity, radio-echo sounding, apatite fission track data and structural geology. The NNW magnetic lineament, which we interpret to mark the eastern RSR shoulder, forms the western margin of the “Alexandra Mountains horst”. This fundamental aeromagnetic feature lies on strike with the Colbeck Trough, a prominent NNW half-graben linked to Late Cretaceous(?) and Cenozoic(?) faulting in the eastern RSR. East–west and north–north–east to NE magnetic trends are also imaged. Magnetic trends, if interpreted as reflecting the signature of rift-related normal faults, would imply N–S to NE crustal extension followed by later northwest–southeast directed extension. NW–SE extension would be compatible with Cenozoic(?) oblique RSR rifting. Previous structural data from the Ford Ranges have, however, been interpreted to indicate that both Cretaceous and Cenozoic extensions were N–S to NE–SW directed.  相似文献   
149.
IntroductionTrial-and-error forward modeling of wide-angle seismic reflection/refraction traveltimes for 2-D velocity structure is extremely time-consuming, even for experienced data interpreters. For wide-angle seismic reflection/refraction experiments that consist of numerous shots along a single line, it is quite difficult through repeated trial-and-error forward modeling to construct a 2-D model that fits the data within acceptable limits (Cerveny, et al, 1977; ZHANG, et al, 200 . In ad…  相似文献   
150.
The volcanological history of Campi Flegrei suggests that the most frequent eruptions are characterized by the emplacement of pyroclastic flow and surge deposits erupted from different vents scattered over a 150-km2 caldera. The evaluation of volcanic risk in volcanic fields is complex because of the lack of a central vent. To approach this problem, we subdivided the entire area of Campi Flegrei into a regular grid and evaluated the relative spatial probability of opening of vents based on geological, geophysical and geochemical data. We evaluated the volcanic risk caused by pyroclastic flows based on the formula proposed by UNESCO (1972), R=H×V×Va, where H is the hazard, V is the vulnerability and Va is the value of the elements at risk. The product H×V was obtained by performing simulations of type eruptions centered in each cell of the grid. The simulation is based on the energy cone scheme proposed by Sheridan and Malin [J. Volcanol. Geotherm. Res. 17 (1983) 187–202], hypothesizing a column collapse height of 100 m for eruptions of VEI=3 and 300 m for eruptions of VEI=4 with a slope angle of 6°. Each simulation has been given the relative probability value associated with the corresponding cell. We made use of the GIS software ArcView 3.2 to evaluate the intersection between the energy cone and the topography. The superposition of the areas invaded by pyroclastic flows (124 simulations for VEI=3 and 37 for VEI=4) was used to obtain the relative hazard map of the area. The relative volcanic risk map is obtained by superimposing the urbanization maps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号