首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2307篇
  免费   303篇
  国内免费   556篇
测绘学   11篇
大气科学   29篇
地球物理   432篇
地质学   2166篇
海洋学   104篇
天文学   15篇
综合类   63篇
自然地理   346篇
  2024年   10篇
  2023年   30篇
  2022年   39篇
  2021年   64篇
  2020年   71篇
  2019年   96篇
  2018年   65篇
  2017年   59篇
  2016年   63篇
  2015年   83篇
  2014年   78篇
  2013年   173篇
  2012年   132篇
  2011年   91篇
  2010年   56篇
  2009年   131篇
  2008年   167篇
  2007年   141篇
  2006年   150篇
  2005年   147篇
  2004年   168篇
  2003年   112篇
  2002年   118篇
  2001年   88篇
  2000年   93篇
  1999年   89篇
  1998年   94篇
  1997年   97篇
  1996年   80篇
  1995年   79篇
  1994年   62篇
  1993年   48篇
  1992年   35篇
  1991年   24篇
  1990年   33篇
  1989年   23篇
  1988年   21篇
  1987年   15篇
  1986年   9篇
  1985年   10篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1973年   1篇
排序方式: 共有3166条查询结果,搜索用时 46 毫秒
51.
In the central part of the internal Western Alps, widespread multidirectional normal faulting resulted in an orogen-scale radial extension during the Neogene. We revisit the frontal Piémont units, between Doire and Ubaye, where contrasting lithologies allow analysing the interference with the N–S trending Oligocene compressive structures. A major extensional structure is the orogen-perpendicular Chenaillet graben, whose development was guided by an E–W trending transfer fault zone between the Chaberton backfold to the north and the Rochebrune backthrust to the south. The Chaberton hinge zone was passively crosscut by planar normal faults, resulting in a E–W trending step-type structure. Within the Rochebrune nappe, E–W trending listric normal faults bound tilted blocks that slipped northward along the basal backthrust surface reactivated as an extensional detachment. Gravity-driven gliding is suggested by the general northward tilting of the structure in relation with the collapse of the Chenaillet graben. The stress tensors computed from brittle deformation analysis confirm the predominance of orogen-parallel extension in the entire frontal Piémont zone. This can be compared with the nearby Briançonnnais nappe stack where the extensional reactivation of thrust surfaces locally resulted in prominent orogen-perpendicular extension. Such a contrasting situation illustrates how the main direction of the late-Alpine extension may be regionally governed by the nature and orientation of the pre-existing structures inherited from the main collision stage.  相似文献   
52.
王春得 《地下水》2005,27(5):347-349
通过对向斜洼地含水层水文地质特征的勘探及研究,对研究区的水文地质边界条件进行了概化,并用水均衡法估算了地下水资源量,对拟建一级电站引水渠沿线提取地下水进行融冰的可行性进行了研究,并提出了取水方案.  相似文献   
53.
富碱斑岩中超镁铁深源包体岩石的矿物学特征   总被引:10,自引:0,他引:10  
在云南省鹤庆县六合乡富碱斑岩体中找到超镁铁深源岩石包体,这对于研究富碱斑岩的起源和演化及其成岩成矿作用具有重要意义。本文较系统地研究了深源包体岩石的矿物学特征,揭示该深源包体具有原始上地幔岩在地幔条件下受到一定程度富集地幔流体交代作用改造的特征,具有富集地幔低程度部分熔融属性,为富碱斑岩的成岩成矿演化提供了重要的矿物学依据。  相似文献   
54.
Danian marine sedimentation in the Paris Basin occurred between two major erosional phases. The earlier was responsible for the stripping of presumably deposited Maastrichtian sediments and of a variable thickness of Campanian chalk. The later occurred during the late Palaeocene and resulted in the erosion of almost all Danian deposits, which are now limited to small and scattered outcrops. One of these outcrops corresponds to reefal and peri‐reefal limestones of middle to late Danian age, exposed in the quarries of Vigny (NW of Paris). Danian deposits here show intricate relations with the surrounding Campanian chalk. Danian sedimentation was contemporaneous with faulting, which generated signifiant sea‐floor relief and resulted in contrasting depositional areas: topographic highs with coralgal reefs, and depressions where calcirudite channel fill accumulated. Normal faulting occurred along WNW–ESE master faults. The generation of submarine fault scarps gave rise to various types of gravity‐driven phenomena, including the sliding and slumping of large blocks of reefal limestone and the deposition of carbonate debris flows. Along with the redeposition of the Danian carbonates, flows of fluidized and reworked Campanian chalk resulted from the peculiar physical properties of the undercompacted chalks. Erosion and faulting occurred predominantly during the Palaeocene and represent a major episode in the physiographic evolution of the Paris Basin.  相似文献   
55.
Melt loss and the preservation of granulite facies mineral assemblages   总被引:29,自引:3,他引:29  
The loss of a metamorphic fluid via the partitioning of H2O into silicate melt at higher metamorphic grade implies that, in the absence of open system behaviour of melt, the amount of H2O contained within rocks remains constant at temperatures above the solidus. Thus, granulite facies rocks, composed of predominantly anhydrous minerals and a hydrous silicate melt should undergo considerable retrogression to hydrous upper amphibolite facies assemblages on cooling as the melt crystallizes and releases its H2O. The common occurrence of weakly retrogressed granulite facies assemblages is consistent with substantial melt loss from the majority of granulite facies rocks. Phase diagram modelling of the effects of melt loss in hypothetical aluminous and subaluminous metapelitic compositions shows that the amount of melt that has to be removed from a rock to preserve a granulite facies assemblage varies markedly with rock composition, the number of partial melt loss events and the P–T conditions at which melt loss occurs. In an aluminous metapelite, the removal of nearly all of the melt at temperatures above the breakdown of biotite is required for the preservation of the peak mineral assemblage. In contrast, the proportion of melt loss required to preserve peak assemblages in a subaluminous metapelite is close to half that required for the aluminous metapelite. Thus, if a given proportion of melt is removed from a sequence of metapelitic granulites of varying composition, the degree of preservation of the peak metamorphic assemblage may vary widely.  相似文献   
56.
Apatite fission track analysis was performed on 56 samples from central Spain to unravel the far field effects of the Alpine plate tectonic history of Iberia. The modelled thermal histories reveal complex cooling in the Cenozoic, indicative of intermittent denudation. Accelerated cooling events occurred across the Spanish Central System (SCS) from the Middle Eocene to Recent. These accelerated cooling events resulted in up to 2.8±0.9 km of denudation in the western Sierra de Gredos and 3.6±1.0 km in the central and eastern Gredos (assuming a paleogeothermal gradient of 28±5 °C and a surface temperature of 10 °C). The greatest amount of denudation (5.0±1.6 km) occurred in the Sierra de Guadarrama. Accompanying rock uplift was 4.7±1.0 and 5.9±1.6 km in the eastern Gredos and Guadarrama, respectively. Most denudation in the Gredos occurred from the Middle Eocene to the Early Miocene and can be related to the N–S stress field, induced by the Pyrenean compression. In the Guadarrama, the greatest denudation was Pliocene to Recent of age and seems related to the ongoing NW–SE Betic compression. The fact that the formation of the E–W trending Gredos coincides with the N–S Pyrenean compression and the creation of the present day morphology of the NE–SW trending Guadarrama with the younger NW–SE Betic compression, indicates that they record the far field effects of Alpine plate tectonics on Iberia. The trend of pre-existing lineaments was of major importance in influencing the style and magnitude of these of far field effects.  相似文献   
57.
In the last decade, even in areas that had been considered tectonically stable, a great amount of Cenozoic, including the Quaternary period, structural data have been collected throughout Brazil. The main goal of this study is to describe the Cenozoic structures and tectonic evolution of an area that is located at the border of the Paraná Basin in the state of São Paulo.The research methods consisted of the analysis of: (1) brittle structure data, mainly conjugate fractures and fault slip data; (2) lineaments traced on air photos and TM Landsat and radar images; and (3) a second-order base surface map.The study area, during the Cenozoic, has been affected by five strike–slip tectonic events, which generated mainly strike–slip faults, and secondarily normal and reverse ones. The events were named, from the oldest to the youngest, E1-NE, E2-EW, E3-NW, E4-NS, and E5-NNE; and the maximum principal stresses σ1 strike approximately NE–SW, E–W, NW–SE, N–S, and NNE–SSW, respectively. Event E2-EW seems to have been contemporaneous with the deposition of the Rio Claro Formation, the most important Cenozoic deposit of probable Neogenic age, and also to have controlled the distribution of its deposits. Event E3-NW was the strongest one in the area, as is pointed out by structural data, and the maximum principal stress σ1 of event E5-NNE is partially concordant with the orientation of σH-max of well break-out data in the Paraná Basin, suggesting a Neotectonic activity for this event. Finally, discontinuities parallel and correlated to the directions of strike–slip faults of the Cenozoic events seem to have actively controlled the sculpturing of the relief in the study area.  相似文献   
58.
Abstract The initial volcanic phase of Cretaceous island arc strata in central Puerto Rico, at the eastern end of the extinct Greater Antilles Arc, comprises a 6‐km thick pile of lava and volcanic breccia (Río Majada Group). Preserved within the sequence is a conspicuous shift in absolute abundances of the more incompatible elements, including Th, Nb, and the light rare earth elements (LREE: La, Ce, Pr and Nd). The compositional shift is marked by a decrease in La/Sm from averages of 2.11 in the lowest third of the pile (Formation A) to 1.48 at the top (Formation C), and by a distinctive flattening of LREE segments of chondrite‐normalized REE patterns. i87Sr/86Sr and ?Nd average about 0.7035 and 8.2, respectively, in early Formation A basalts. These ranges normally overlap samples from later Formations B and C. Isotope compositions of the latter group are more variable, however, and several samples are considerably more radiogenic than Formation A basalts, such that i87Sr/86Sr averages almost 0.7042 while ?Nd‐values decrease to 7.5 in Formation B and C basalts. Theoretical models of non‐modal melting processes in both amphibole peridotite and spinel lherzolite sources provide insight into the origin of depleted Th, Nb, and LREE abundances in Puerto Rican basalts. Low Nb concentrations less than normal mid‐oceanic ridge basalts in Formation A basalts indicate the wedge was slightly depleted by low‐volume decompression fusion due to induced convection in the back‐arc region prior to entry of the source into the arc melting zone. However, depleted patterns in Formation C basalts cannot be generated by relatively greater degrees of decompression fusion in the back‐arc, because addition of the La‐enriched slab‐derived component to more depleted source material invariably produces elevated rather than decreased La/Sm. Refluxing of Formation A harzburgitic residua is similarly precluded. In contrast, the observed patterns are readily reproduced by multistage melting models involving hybridized sources containing normal Formation A lherzolite source material blended with recycled, unrefluxed harzburgite residua. Successful models require hybrid sources containing large volumes of recycled harzburgite (up to 50%) during generation of Formation C basalts. Slightly elevated radiometric Sr and Nd isotopes in a few flows from Formation C are attributed to partial refluxing of the hybrid sources within the wedge.  相似文献   
59.
Tomographic images of mantle structure beneath the region north and northeast of Australia show a number of anomalously fast regions. These are interpreted using a recent plate tectonic reconstruction in terms of current and former subduction systems. Several strong anomalies are related to current subduction. The inferred slab lengths and positions are consistent with Neogene subduction beneath the New Britain and Halmahera arcs, and at the Tonga and the New Hebrides trenches where there has been rapid rollback of subduction hinges since about 10 Ma. There are several deeper flat-lying anomalies which are not related to present subduction and we interpret them as former subduction zones overridden by Australia since 25 Ma. Beneath the Bird’s Head and Arafura Sea is an anomaly interpreted to be due to north-dipping subduction beneath the Philippines-Halmahera arc between 45 and 25 Ma. A very large anomaly extending from the Papuan peninsula to the New Hebrides, and from the Solomon Islands to the east Australian margin, is interpreted to be the remnant of south-dipping subduction beneath the Melanesian arc between 45 and 25 Ma. This interpretation implies that a flat-lying slab can survive for many tens of millions of years at the bottom of the upper mantle. In the lower mantle there is a huge anomaly beneath the Gulf of Carpentaria and east Papua New Guinea. This is located above the position where the tectonic model interprets a change in polarity of subduction from north-dipping to south-dipping between 45 and 25 Ma. We suggest this deep anomaly may be a slab subducted beneath eastern Australian during the Cretaceous, or subducted north of Australia during the Cenozoic before 45 Ma. The tomography also supports the tectonic interpretation which suggests little Neogene subduction beneath western New Guinea since no slab is imaged south of the New Guinea trench. However, one subduction zone in the tectonic model and many others, that associated with the Trobriand trough east of Papua New Guinea and the Miocene Maramuni arc, is not seen in the tomographic images and may require reconsideration of currently accepted tectonic interpretations.  相似文献   
60.
Positive tectonic inversion is related to the transmission of compressional stresses along a décollement into the foreland of an orogenic zone. This stress and strain concentration in regions remote from the main orogenic front is commonly related to the presence of pre-existing rheological heterogeneities such as normal syn-depositional faults. During inversion, these pre-existing normal faults are reactivated as reverse faults. Tectonic inversion in the Rhenohercynian fold-and-thrust belt during the Variscan Orogeny shows that inversion is likely synchronous with the onset of collision in the hinterland. Here, we present the results of a simplified thermo-mechanical model (STM) which allows one to study strain partitioning between two orogenic zones. We show that, if the two orogenic zones have the same mechanical properties, the viscosity of the décollement, which links them, controls the initial strain partitioning. During subsequent finite shortening, erosional processes determine the partitioning of strain rate. The presence of a weak structure in the inverted zone and of a low-viscosity décollement leads to initial strain concentration in the inverted track rather than in the collision zone and a progressive decrease in strain partitioning between the two orogenic zones. The STM results are in good agreement with results of a 2D finite-element model. We conclude that, in the western part of the Rhenohercynian Massif, simultaneous uplift and deformation within the Mid-German Crystalline Rise (the main collision zone) and the Ardenne Anticlinorium (the inverted zone) lead to interpreting this orogenic event as a case of vice tectonic rather than the propagation of a ‘wave of folding’ towards the Variscan front, as suggested by previous authors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号