首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6001篇
  免费   2179篇
  国内免费   411篇
测绘学   484篇
大气科学   73篇
地球物理   3917篇
地质学   2718篇
海洋学   411篇
天文学   343篇
综合类   175篇
自然地理   470篇
  2024年   5篇
  2023年   11篇
  2022年   34篇
  2021年   113篇
  2020年   119篇
  2019年   310篇
  2018年   498篇
  2017年   545篇
  2016年   582篇
  2015年   531篇
  2014年   543篇
  2013年   847篇
  2012年   540篇
  2011年   507篇
  2010年   415篇
  2009年   340篇
  2008年   400篇
  2007年   305篇
  2006年   310篇
  2005年   282篇
  2004年   258篇
  2003年   231篇
  2002年   195篇
  2001年   175篇
  2000年   171篇
  1999年   66篇
  1998年   31篇
  1997年   40篇
  1996年   24篇
  1995年   25篇
  1994年   16篇
  1993年   35篇
  1992年   12篇
  1991年   20篇
  1990年   12篇
  1989年   15篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1954年   1篇
排序方式: 共有8591条查询结果,搜索用时 31 毫秒
81.
模糊理论在公路边坡稳定性分析中的应用   总被引:7,自引:0,他引:7  
边坡工程是一个复杂的系统工程。边坡的稳定与否直接关系到其防护工作的程度。因此,如何有效、合理地判断边坡的稳定性对整个工程的经济与社会效益极为重要。影响边坡稳定的因素众多,判断其稳定与否应考虑各因素的综合效果。论文运用模糊理论中的多因素综合评判模型对某高速公路边坡的稳定性进行研究。通过全面考虑影响因素,建立相应的评判因素集及单因素评判矩阵,运用专家评判法和判断矩阵法确定出各因素的权重。最后通过多层次模糊评判得到该边坡的稳定性评判结果。研究证明,该法在边坡稳定性分析评判中是切实可行的。  相似文献   
82.
粗差发现和定位能力与相关系数的关系   总被引:2,自引:0,他引:2  
根据粗差判断方程中的判断矩阵和两个统计检验量之间相关系数的函数式,论证了两种不同的研究方法所确定的粗差不能定位的数学模型实际上是相等的。通过算例,不仅说明两种研究方法对观测量不能定位粗差的判断是一致的,而且使用判断矩阵研究观测量的粗差发现和定位能力会更加方便简单。  相似文献   
83.
金刚石工具富铁胎体掺杂稀土的研究   总被引:5,自引:0,他引:5  
稀土的加入量、加入形态和在混料中的均匀弥散性直接影响热压富铁金刚石复合材料的性能。改进的稀土掺杂工艺,保证了稀土在胎体中的均匀弥散性;通过试验研究了稀土的加入量与富铁胎体的抗弯强度、抗冲击韧性和孔隙率的关系,从而确定了稀土的最优加入量。通过差热分析试验,认为稀土可以改变富铁胎体的热物理特性。  相似文献   
84.
因子计量图的新思路   总被引:3,自引:0,他引:3  
R型因子分析中,因子计量从所有原始变量中将某一特定因子的有关信息集中起来,可被用来解释某一特定地质作用形成的样品在不同空间的分布等问题,由已知典型地质体的元素含量等地球化学指标计算出来的因子计量系数矩阵作为模型,用这个模型可以计算未知地质体的因子计量,这种方法,不仅可以节省每次加入新样品或舍去部分样品时所有因子计量图都需要重新做的繁重的工作量,而且更重要的是这种图的地球化学意义明确,使我们能够用已知的典型地质现象去预测未知地质观象提供了一条新的途径。  相似文献   
85.
The response of low‐ductility reinforced concrete (RC) frames, designed typically for a non‐seismic region, subjected to two frequencies of base excitations is studied. Five half‐scaled, two‐bay, two‐storey, RC frames, each approximately 5 m wide by 3.3 m high, were subjected to both horizontal and/or vertical base excitations with a frequency of 40 Hz as well as a lower frequency of about 4 Hz (close to the fundamental frequency) using a shake table. The imposed acceleration amplitude ranged from 0.2 to 1.2g. The test results showed that the response characteristics of the structures differed under high‐ and low‐frequency excitations. The frames were able to sustain high‐frequency excitations without damage but were inadequate for low‐frequency excitations, even though the frames exhibited some ductility. Linear‐elastic time‐history analysis can predict reasonably well the structural response under high‐frequency excitations. As the frames were not designed for seismic loads, the reinforcement detailing may not have been adequate, based on the crack pattern observed. The effect of vertical excitation can cause significant additional forces in the columns and moment reversals in the beams. The ‘strong‐column, weak‐beam’ approach for lateral load RC frame design is supported by experimental observations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
86.
The seismic response of single‐degree‐of‐freedom (SDOF) systems incorporating flag‐shaped hysteretic structural behaviour, with self‐centring capability, is investigated numerically. For a SDOF system with a given initial period and strength level, the flag‐shaped hysteretic behaviour is fully defined by a post‐yielding stiffness parameter and an energy‐dissipation parameter. A comprehensive parametric study was conducted to determine the influence of these parameters on SDOF structural response, in terms of displacement ductility, absolute acceleration and absorbed energy. This parametric study was conducted using an ensemble of 20 historical earthquake records corresponding to ordinary ground motions having a probability of exceedence of 10% in 50 years, in California. The responses of the flag‐shaped hysteretic SDOF systems are compared against the responses of similar bilinear elasto‐plastic hysteretic SDOF systems. In this study the elasto‐plastic hysteretic SDOF systems are assigned parameters representative of steel moment resisting frames (MRFs) with post‐Northridge welded beam‐to‐column connections. In turn, the flag‐shaped hysteretic SDOF systems are representative of steel MRFs with newly proposed post‐tensioned energy‐dissipating connections. Building structures with initial periods ranging from 0.1 to 2.0s and having various strength levels are considered. It is shown that a flag‐shaped hysteretic SDOF system of equal or lesser strength can always be found to match or better the response of an elasto‐plastic hysteretic SDOF system in terms of displacement ductility and without incurring any residual drift from the seismic event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
87.
The damping‐solvent extraction method for the analysis of unbounded visco‐elastic media is evaluated numerically in the frequency domain in order to investigate the influence of the computational parameters—domain size, amount of artificial damping, and mesh density—on the accuracy of results. An analytical estimate of this influence is presented, and specific questions regarding the influence of the parameters on the results are answered using the analytical estimate and numerical results for two classical problems: the rigid strip and rigid disc footings on a visco‐elastic half‐space with constant hysteretic material damping. As the domain size is increased, the results become more accurate only at lower frequencies, but are essentially unaffected at higher frequencies. Choosing the domain size to ensure that the static stiffness is computed accurately leads to an unnecessarily large domain for analysis at higher frequencies. The results improve by increasing artificial damping but at a slower rate as the total (material plus artificial) damping ratio ζt gets closer to 0.866. However, the results do not deteriorate significantly for the larger amounts of artificial damping, suggesting that ζt≈0.6 is appropriate; a larger value is not likely to influence the accuracy of results. Presented results do not support the earlier suggestion that similar accuracy can be achieved by a large bounded domain with small damping or by a small domain with larger damping. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
88.
Structural vibration control using active or passive control strategy is a viable technology for enhancing structural functionality and safety against natural hazards such as strong earthquakes and high wind gusts. Both the active and passive control systems have their limitations. The passive control system has limited capability to control the structural response whereas the active control system depends on external power. The power requirement for active control of civil engineering structures is usually quite high. Thus, a hybrid control system is a viable solution to alleviate some of the limitations. In this paper a multi‐objective optimal design of a hybrid control system for seismically excited building structures has been proposed. A tuned mass damper (TMD) and an active mass driver (AMD) have been used as the passive and active control components of the hybrid control system, respectively. A fuzzy logic controller (FLC) has been used to drive the AMD as the FLC has inherent robustness and ability to handle the non‐linearities and uncertainties. The genetic algorithm has been used for the optimization of the control system. Peak acceleration and displacement responses non‐dimensionalized with respect to the uncontrolled peak acceleration and displacement responses, respectively, have been used as the two objectives of the multi‐objective optimization problem. The proposed design approach for an optimum hybrid mass damper (HMD) system, driven by FLC has been demonstrated with the help of a numerical example. It is shown that the optimum values of the design parameters of the hybrid control system can be determined without specifying the modes to be controlled. The proposed FLC driven HMD has been found to be very effective for vibration control of seismically excited buildings in comparison with the available results for the same example structure but with a different optimal absorber. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
89.
It is often infeasible to carry out coupled analyses of multiply‐supported secondary systems for earthquake excitations. ‘Approximate’ decoupled analyses are then resorted to, unless the response errors due to those are significantly high. This study proposes a decoupling criterion to identify such cases where these errors are likely to be larger than an acceptable level. The proposed criterion is based on the errors in the primary system response due to decoupling and has been obtained by assuming (i) the input excitation to be an ideal white noise process, (ii) cross‐modal correlation to be negligible, and (iii) the combined system to be classically damped. It uses the modal properties of the undamped combined system, and therefore, a perturbation approach has been formulated to determine the combined system properties in case of light to moderately heavy secondary systems. A numerical study has been carried out to illustrate the accuracy achieved with the proposed perturbation formulation. The proposed decoupling criterion has been validated with the help of two example primary‐secondary systems and four example excitation processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
90.
A pseudodynamic testing procedure has been applied by which the seismic response of a base‐isolated building is obtained by using as specimen the isolators, while the superstructure is numerically simulated. The procedure also takes advantage of the continuous pseudodynamic testing capabilities of the ELSA laboratory, which increase the accuracy of the results and reduce the strain‐rate effect of the rubber bearings. A simple proportional correction of the measured forces compensates the remaining strain‐rate effect due to the unrealistic speed of the test. The correction factor is obtained by means of a characterizing test on the specific rubber isolators. The developed method has been successfully applied to the prediction of the seismic response of a base‐isolated four‐storey building submitted to several specified accelerograms. The results for those earthquakes as well as the effects of some changes of the parameters of the system are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号