首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2100篇
  免费   379篇
  国内免费   588篇
测绘学   10篇
地球物理   633篇
地质学   1792篇
海洋学   67篇
天文学   8篇
综合类   61篇
自然地理   496篇
  2024年   7篇
  2023年   24篇
  2022年   43篇
  2021年   50篇
  2020年   54篇
  2019年   51篇
  2018年   41篇
  2017年   44篇
  2016年   50篇
  2015年   58篇
  2014年   57篇
  2013年   81篇
  2012年   127篇
  2011年   92篇
  2010年   68篇
  2009年   96篇
  2008年   132篇
  2007年   194篇
  2006年   188篇
  2005年   163篇
  2004年   171篇
  2003年   134篇
  2002年   126篇
  2001年   115篇
  2000年   106篇
  1999年   116篇
  1998年   109篇
  1997年   92篇
  1996年   85篇
  1995年   63篇
  1994年   56篇
  1993年   68篇
  1992年   33篇
  1991年   38篇
  1990年   30篇
  1989年   20篇
  1988年   27篇
  1987年   29篇
  1986年   16篇
  1985年   6篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1954年   1篇
排序方式: 共有3067条查询结果,搜索用时 734 毫秒
331.
Deep mantle processes and the dynamic mechanism of magmatism in the Japan Sea Basin are important processes that have not been studied in detail. In this paper, systematic evaluation of basalt samples from the ocean drilling program Site 794 in the Japan Sea was performed, which included petrography, whole-rock major- and trace-element analysis, Sr-Nd-Pb isotopic composition, and electron microprobe analysis of plagioclase and clinopyroxene. These basalts belong to the tholeiitic series with porphyritic texture and massive Ca-rich plagioclase, clinopyroxene, and minor olivine phenocrysts. The basalts are characterized as flat rare earth elements and high-field-strength elements with remarkably low ratios of(La/Yb)N(0.75–2.51), significant positive anomalies of Ba, Sr, and Rb and no Eu anomaly(δEu = 0.99–1.36). The samples showed relatively high 87Sr/86Sr(0.70425–0.70522), 207Pb/204Pb(15.511–15.610), and 208Pb/204Pb(38.064–38.557) values and a low 143Nd/144 Nd ratio(0.51271–0.51295). The basalts from Site 794 can be divided into upper, middle, and lower volcanic rocks(UVR, MVR, and LVR) on the basis of their stratigraphic level. The MVR was geochemically derived from the depleted mantle, whereas the UVR and LVR originated from a nondepleted and relatively enriched mantle source with contributions from subducted Pacific plate fluid and sediments. Use of geothermobarometers indicates that the crystallization pressure for the UVR and LVR(6.25–11.19 kbar) was significantly higher than that of the MVR(3.48–5.84 kbar). The UVR and LVR may have been derived from the low-degree(5%–10%) partial melting of spinel lherzolite, while the MVR originated from a shallower mantle source with a high degree(10%–20%) of partial melting. In addition, the geochemical characteristics of the samples are consistent with a younger age(13–17 Ma) and the depleted composition of the MVR and an older age(17–23 Ma) and slightly enriched composition of the UVR and LVR. Therefore, temporal changes in the mantle source from old and enriched to young and depleted and subsequently to old and nondepleted may have been associated with progressive lithospheric extension and thinning, as well as at least two episodes of diverse asthenospheric upwelling and pull-apart tectonic motion in the Yamato Basin.  相似文献   
332.
文章通过分析豫西地区的大量地质矿产资料后发现,区内存在"小岩体成大矿"的规律。认为豫西地区自燕山期以来,随着地幔热柱的演化,区内地壳运动转为伸展活动,地壳减薄、地幔不均衡上隆和中酸性岩浆脉动式上侵;中酸性岩浆脉动式上侵过程打通了深部成矿物质上升的通道,使得含矿流体能够到达地壳上部,并在幔枝构造外围主次级拆离带、岩体内外接触带、构造裂隙等适宜部位集聚成矿。  相似文献   
333.
Although there has been significant progress in the seismic imaging of mantle heterogeneity,the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models.To address this question,we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns.A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow,without imposing prescribed surface velocities(i.e.,plate-like boundary condition).As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip(rigid) boundary condition.A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved,and its geographical location is fixed during the evolution of mantle flow.Considering the impact of different assumed surface boundary conditions(rigid and plate-like) on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure.Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term,stable pattern of thermal heterogeneity in the lowermost mantle that resembles the presentday Large Low Shear Velocity Provinces(LLSVPs),especially below the Pacific.The evolution of subduction zones may be,however,influenced by the mantle-wide flow driven by deeply-rooted and longlived superplumes since Archean times.These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique slow feature distinct from the two principal LLSVPs.We find there is no need for dense chemical ’piles’ in the lower mantle to generate a stable distribution of temperature anomalies that are correlated to the LLSVPs and the Perm Anomaly.Our tomography-based convection simulations also demonstrate that intraplate volcanism in the south-east Pacific may be interpreted in terms of shallow small-scale convection triggered by a superplume beneath the East Pacific Rise.  相似文献   
334.
There is a correlation of global large igneous province (LIP) events with zircon age peaks at 2700, 2500, 2100, 1900, 1750, 1100, and 600 and also probably at 3450, 3000, 2000, and 300 Ma. Power spectral analyses of LIP event distributions suggest important periodicities at 250, 150, 100, 50, and 25 million years with weaker periodicities at 70–80, 45, and 18–20 Ma. The 25 million year periodicity is important only in the last 300 million years. Some LIP events are associated with granite-forming (zircon-producing) events and others are not, and LIP events at 1900 and 600 Ma correlate with peaks in craton collision frequency. LIP age peaks are associated with supercontinent rifting or breakup, but not dispersal, at 2450–2400, 2200, 1380, 1280, 800–750, and ≤200 Ma, and with supercontinent assembly at 1750 and 600 Ma. LIP peaks at 2700 and 2500 Ma and the valley between these peaks span the time of Neoarchaean supercraton assemblies. These observations are consistent with plume generation in the deep mantle operating independently of the supercontinent cycle and being controlled by lower-mantle and core-mantle boundary thermochemical dynamics. Two processes whereby plumes can impact continental assembly and breakup are (1) plumes may rise beneath supercontinents and initiate supercontinent breakup, and (2) plume ascent may increase the frequency of craton collisions and the rate of crustal growth by accelerating subduction.  相似文献   
335.
336.
Summary. P -wave relative teleseismic residuals were measured for a network of seismological stations along a 300 km profile across the Adamawa Plateau and the Central African Shear Zone of central Cameroon, to determine the variation in crust and upper mantle velocity associated with these structures. A plot of the mean relative residuals for the stations shows a long wavelength (> 300 km) variation of amplitude 0.45 s. the slowest arrivals are located over and just to the north, of the faulted northern margin of the Adamawa Plateau. the residuals do not correlate with topography, surface geology or the previously determined crustal structure, in any simple way.
The Aki inversion technique has been used to invert the relative residuals into a 3-D model of velocity perturbations from a mean earth model. the results show the region is divided roughly into three blocks by two subvertical boundaries, striking ENE and traversing both the crust and upper mantle down to depths greater than 190km. the central block, which is 2 per cent slower than the adjacent blocks, roughly corresponds to the Central African Shear Zone. the Adamawa Plateau, as an individual uplifted area, is explained by the interaction of a regional anomalous upper mantle associated with the West African Rift System, and the Central African Shear Zone, which provided a conduit for heat flow to the surface.  相似文献   
337.
338.
339.
340.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号