首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2686篇
  免费   520篇
  国内免费   891篇
测绘学   17篇
大气科学   171篇
地球物理   761篇
地质学   2269篇
海洋学   136篇
天文学   21篇
综合类   96篇
自然地理   626篇
  2024年   9篇
  2023年   54篇
  2022年   67篇
  2021年   85篇
  2020年   80篇
  2019年   81篇
  2018年   70篇
  2017年   69篇
  2016年   88篇
  2015年   105篇
  2014年   124篇
  2013年   142篇
  2012年   199篇
  2011年   168篇
  2010年   109篇
  2009年   136篇
  2008年   173篇
  2007年   235篇
  2006年   232篇
  2005年   200篇
  2004年   199篇
  2003年   160篇
  2002年   149篇
  2001年   145篇
  2000年   132篇
  1999年   131篇
  1998年   126篇
  1997年   107篇
  1996年   94篇
  1995年   72篇
  1994年   58篇
  1993年   72篇
  1992年   38篇
  1991年   40篇
  1990年   32篇
  1989年   21篇
  1988年   28篇
  1987年   29篇
  1986年   21篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1954年   1篇
排序方式: 共有4097条查询结果,搜索用时 500 毫秒
51.
The Quaternary Eifel volcanic fields, situated on the Rhenish Massif in Germany, are the focus of a major interdisciplinary project. The aim is a detailed study of the crustal and mantle structure of the intraplate volcanic fields and their deep origin. Recent results from a teleseismic P-wave tomography study reveal a deep low-velocity structure which we infer to be a plume in the upper mantle underneath the volcanic area [J.R.R. Ritter et al., Earth Planet. Sci. Lett. 186 (2001) 7-14]. Here we present a travel-time investigation of 5038 teleseismic shear-wave arrivals in the same region. First, the transverse (T) and radial (R) component travel-time residuals are treated separately to identify possible effects of seismic anisotropy. A comparison of 2044 T- and 2994 R-component residuals demonstrates that anisotropy does not cause any first-order travel-time effects. The data sets reveal a deep-seated low-velocity anomaly beneath the volcanic region, causing a delay for teleseismic shear waves of about 3 s. Using 3773 combined R- and T-component residuals, an isotropic non-linear inversion is calculated. The tomographic images reveal a prominent S-wave velocity reduction in the upper mantle underneath the Eifel region. The anomaly extends down to at least 400 km depth. The velocity contrast to the surrounding mantle is depth-dependent (from −5% at 31-100 km depth to at least −1% at 400 km depth). At about 170-240 km depth the anomaly is nearly absent. The resolution of the data is sufficient to recover the described features, however the anomaly in the lower asthenosphere is underestimated due to smearing and damping. The main anomaly is similar to the P-wave model except the latter lacks the ‘hole’ near 200 km depth, and both are consistent with an upper mantle plume structure. For plausible anhydrous plume material in the uppermost 100 km of the mantle, an excess temperature as great as 200-300 K is estimated from the seismic anomaly. However, 1% partial melt reduces the required temperature anomaly to about 100 K. The temperature anomaly associated with the deeper part of the plume (250 to about 450 km depth) is at least 70 K. However, this estimate is quite uncertain, because the amplitude of the shear-wave anomaly may be larger than the modelled one. Another possibility is water in the upwelling material. The gap at 170-240 km depth could arise from an increase of the shear modulus caused by dehydration processes which would not affect P-wave velocities as much. An interaction of temperature and compositional variations, including melt and possibly water, makes it difficult to differentiate quantitatively between the causes of the deep-seated low-velocity anomaly.  相似文献   
52.
中国西南及邻区上地幔P波三维速度结构/   总被引:8,自引:0,他引:8  
雷建设  周蕙兰 《地震学报》2002,24(2):126-134
利用ISC报告以及中国和NEIC基本测震台网报告中的80974条P波初至到时资料(地震数为7053,台站数为165,且地震和台站都分布在研究区内),对中国西南及邻区(北纬10~36、东经70~110)的深至400km的上地幔三维速度结构进行了研究,分辨率达22.初步结果表明:①研究区速度的横向不均匀性,虽随深度增加而减弱,但至400km深度时仍很明显;②在北纬16和24的纵剖面上,可以看到与印度板块向东和欧亚板块相碰撞挤压相对应的速度结构,以及印度板块与欧亚板块速度结构的差异.在东经90的纵剖面上,与印度板块向北俯冲到欧亚板块(青藏高原)之下相对应的速度结构也比较明显;③在90km深度的横剖面上,由缅甸的密支那至越南的洞海的低速条带,可能与红河断裂带有关;④ 提出并使用了能够更为准确直观地描述分辨率好坏的图示方法.   相似文献   
53.
We present new and reprocessed seismic reflection data from the area where the southeast and southwest Greenland margins intersected to form a triple junction south of Greenland in the early Tertiary. During breakup at 56 Ma, thick igneous crust was accreted along the entire 1300-km-long southeast Greenland margin from the Greenland Iceland Ridge to, and possibly 100 km beyond, the triple junction into the Labrador Sea. However, highly extended and thin crust 250 km to the west of the triple junction suggests that magmatically starved crustal formation occurred on the southwest Greenland margin at the same time. Thus, a transition from a volcanic to a non-volcanic margin over only 100–200 km is observed. Magmatism related to the impact of the Iceland plume below the North Atlantic around 61 Ma is known from central-west and southeast Greenland. The new seismic data also suggest the presence of a small volcanic plateau of similar age close to the triple junction. The extent of initial plume-related volcanism inferred from these observations is explained by a model of lateral flow of plume material that is guided by relief at the base of the lithosphere. Plume mantle is channelled to great distances provided that significant melting does not take place. Melting causes cooling and dehydration of the plume mantle. The associated viscosity increase acts against lateral flow and restricts plume material to its point of entry into an actively spreading rift. We further suggest that thick Archaean lithosphere blocked direct flow of plume material into the magma-starved southwest Greenland margin while the plume was free to flow into the central west and east Greenland margins. The model is consistent with a plume layer that is only moderately hotter, 100–200°C, than ambient mantle temperature, and has a thickness comparable to lithospheric thickness variations, 50–100 km. Lithospheric architecture, the timing of continental rifting and viscosity changes due to melting of the plume material are therefore critical parameters for understanding the distribution of magmatism.  相似文献   
54.
55.
56.
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号